The fluoride-salt-cooled high-temperature reactor (FHR) is an advanced reactor concept that uses high-temperature tristructural isotropic (TRISO) fuel with a low-pressure liquid salt coolant. Design of the fluoride-salt-cooled high-temperature test reactor (FHTR) is a key step in the development of the FHR technology and is currently in progress both in China and the United States. An FHTR based on pebble-bed core design with a coolant temperature of 600–700°C is being planned for construction by the Chinese Academy of Sciences’ (CAS) Thorium Molten Salt Reactor (TMSR) Research Center, Shanghai Institute of Applied Physics (SINAP). This paper provides preliminary thermal-hydraulic transient analyses of an FHTR using SINAP’s pebble-bed core design as a reference case. A point kinetic model is implemented using computer code by coupling with a simplified porous medium heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the FHTR by simulating several transient conditions including the unprotected loss of flow, unprotected overcooling, and unprotected transient overpower accidents. The results show that SINAP’s pebble-bed core is a very safe reactor design.

References

References
1.
Forsberg
,
C. W.
,
Hu
,
L. W.
,
Peterson
,
P. F.
, and
Allen
,
T.
,
2012
, “Fluoride-Salt-Cooled High-Temperature Reactors (FHRs) for Power and Process Heat,”
Report MIT-ANP-TR-143
,
Massachusetts Institute of Technology
, Cambridge, MA.
2.
SINAP
,
2012
, “
Pre-Conceptual Design of a 2 MW Pebble-Bed Fluoride Salt Coolant High Temperature Test Reactor
,”
Shanghai Institute of Applied Physics
,
Shanghai, China
.
3.
Jiang
,
M. H.
,
Xu
,
H. J.
, and
Dai
,
Z. M.
,
2012
, “
Advanced Fission Energy Program-TMSR Nuclear Energy System
,”
Bull. Chin. Acad. Sci.
,
27
(
3
), pp.
366
374
.
4.
Dai
,
Z. M.
,
2014
, “
Thorium Molten Salt Reactor System
,”
Shanghai Institute of Applied Physics
,
Shanghai, China
(in Chinese).
5.
Bickel
,
J. E.
,
Laufer
,
M. R.
,
Li
,
L.
,
Cisneros
,
A. T.
, and
Peterson
,
P. F.
,
2010
, “
Conceptual Design, Experiments, and Analysis for the Core of an FHR-16 Test Reactor
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants 2010, ICAPP 2010
,
June 13–June 17
,
American Nuclear Society
, pp.
1281
1291
.
6.
SINAP
,
2012
, “
TMSR Internal Technical Report XDA02010200-TL-2012-09
,”
Shanghai Institute of Applied Physics
,
Shanghai, China
(in Chinese).
7.
Xiao
,
Y.
,
Hu
,
L. W.
,
Forsberg
,
C.
,
Qiu
,
S. Z.
, and
Su
,
G. H.
,
2013
, “
Licensing Considerations of a Fluoride Salt Cooled High Temperature Test Reactor
,”
Proceedings of the 21st International Conference on Nuclear Engineering
,
Chengdu, China
,
July 29–Aug. 2
.
8.
Xiao
,
Y.
,
Hu
,
L. W.
,
Forsberg
,
C.
,
Qiu
,
S. Z.
,
Su
,
G. H.
,
Chen
,
K.
, and
Wang
,
N. X.
,
2014
, “
Analysis of the Limiting Safety System Settings of a Fluoride Salt Cooled High Temperature Test Reactor
,”
Nucl. Technol.
,
187
(
3
), pp.
221
234
.10.13182/NT13-93
9.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press
,
New York
.
10.
Yujun
,
G.
,
Jinling
,
Z.
,
Suizheng
,
Q.
,
Guanghui
,
S.
,
Dounan
,
J.
, and
Zhenwan
,
Y.
,
1997
, “
MITARS: A Thermal Hydraulic Analysis Code for Nuclear Reactor System
,”
Proceedings of the 8th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
,
Kyoto, Japan
,
Sept. 30–Oct. 4
,
Atomic Energy Society of Japan
, pp.
1212
1219
.
11.
Su
,
G. H.
,
Jia
,
D. N.
,
Fukuda
,
K.
, and
Guo
,
Y. J.
,
2001
, “
Theoretical Study on Density Wave Oscillation of Two-Phase Natural Circulation Under Low Quality Conditions
,”
J. Nucl. Sci. Technol.
,
38
(
8
), pp.
607
613
.10.1080/18811248.2001.9715073
12.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equation
,
Prentice-Hall
,
Upper Saddle River, NJ
.
13.
Hindmarsh
,
A. C.
,
1974
,
GEAR: Ordinary Differential Equation System Solver
,
Lawrence Livermore Laboratory
,
Livermore, CA
.
14.
Zuying
,
G.
, and
Lei
,
S.
,
2002
, “
Thermal Hydraulic Calculation of the HTR-10 for the Initial and Equilibrium Core
,”
Nucl. Eng. Des.
,
218
(
1–3
), pp.
51
64
.10.1016/S0029-5493(02)00198-X
15.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat-Transfer Coefficients in Packed-Beds - Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.10.1016/0009-2509(79)85064-2
16.
Wakao
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds[M]
,
Gordon and Breach
,
New York
.
17.
Forsberg
,
C. W.
,
Peterson
,
P. F.
, and
Williams
,
D. F.
,
2005
, “
Liquid-Salt Cooling for Advanced High-Temperature Reactors
,”
Proceedingsof the American Nuclear Society—International Congress on Advances in Nuclear Power Plants 2005, ICAPP’05
,
Seoul, Korea
,
May 15–19
,
American Nuclear Society
, pp.
2080
2095
.
18.
Kim
,
S. J.
,
Hu
,
L. W.
, and
Dunn
,
F.
,
2013
, “
Thermal-Hydraulic Analysis for High Enrichment Uranium (HEU) and Low Enrichment Uranium (LEU) Transitional Core Conversion of the MIT Research Reactor
,”
Nucl. Technol.
,
182
(
3
), pp.
315
334
.
19.
MITR-Staff
,
2011
, “
Safety Analysis Report for the MIT Research Reactor
,”
MIT Nuclear Reactor Laboratory
,
Cambridge, MA
.
20.
SINAP
,
2013
, “
Current Status of the TMSR Project in China
,”
Shanghai Institute of Applied Physics
,
Shanghai, China
.
21.
Song
,
Y.-M.
,
Ma
,
Y.-L.
, and
Zhou
,
Z.-W.
,
2010
, “
Real-Time Simulation of Neutron Space-Time Kinetics for High-Temperature Gas-Cooled Reactor
,”
Yuanzineng Kexue Jishu/Atom. Energy Sci. Technol.
,
44
(
2
), pp.
188
192
.
22.
Ingersoll
,
D. T.
,
Forsberg
,
C. W.
,
Ott
,
L. J.
,
Williams
,
D. F.
, et al. ,
2004
, “
Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)
,” ,
Oak Ridge National Laboratory
.
23.
HAYNES
,
2002
, “
HASTELLOY® N alloy
,”
Haynes International, Inc.
,
Kokomo, IN
.
24.
NUREG/CR-6844
,
2004
, “
TRISO-Coated Particle Fuel Phenomenon Identification and Ranking Tables (PIRTs) for Fission Product Transport Due to Manufacturing, Operations, and Accidents
,”
Office of Nuclear Reactor Regulation, Nuclear Regulation Commission
,
Washington, DC
.
You do not currently have access to this content.