Abstract

Defect quantification is a very important aspect in nondestructive testing (NDT) as it helps in the analysis and prediction of a structure's integrity and lifespan. In this paper, we propose a gradient feature extraction for the quantification of complex defect using topographic primal sketch (TPS) in magnetic flux leakage (MFL) testing. This method uses four excitation patterns so as to obtain MFL images from experiment; a mean image is then produced, assuming it has 80–90% the properties of all four images. A gradient manipulation is then performed on the mean image using a novel least-squares minimization (LSM) approach, for which, pixels with large gradient values (considered as possible defect pixels) are extracted. These pixels are then mapped so as to get the actual defect geometry/shape within the sample. This map is now traced using a TPS for a precise quantification. Results have shown the ability of the method to extract and quantify defects with high precision given its perimeter, area, and depth. This significantly eliminates errors associated with output analysis as results can be clearly seen, interpreted, and understood.

References

References
1.
Mukhopadhyay
,
S.
, and
Srivastava
,
G. P.
,
2000
, “
Characterisation of Metal Loss Defects From Magnetic Flux Leakage Signals With Discrete Wavelet Transform
,”
NDT&E Int.
,
33
(
1
), pp.
57
65
. 10.1016/S0963-8695(99)00011-0
2.
Pimenova
,
A. V.
,
Goldobin
,
D. S.
,
Levesley
,
J.
,
Ivantsov
,
A. O.
,
Elkington
,
P.
, and
Bacciarelli
,
M.
,
2015
, “
Magnetic Flux Leakage Method: Large-Scale Approximation
,”
Math. Model. Nat. Phenom.
,
10
, pp.
1
12
. 10.1051/mmnp/201510306
3.
Ravan
,
M.
,
Amineh
,
R. K.
, and
Koziel
,
S.
,
2014
, “
Sizing of 3-D Arbitrary Defects Using Magnetic Flux Leakage Measurements
,”
IEEE Trans. Magn.
,
46
(
4
), pp.
1024
1033
. 10.1109/tmag.2009.2037008
4.
Minkov
,
D.
, and
Shoji
,
T.
,
1998
, “
Method for Sizing of 3-D Surface Breaking Flaws by Leakage Flux
,”
NDT&E Int.
,
31
(
5
), pp.
317
324
. 10.1016/S0963-8695(98)00020-6
5.
Boat
,
M.
,
Pearson
,
N.
,
Lieb
,
R.
,
Davies
,
J.
,
James
,
R.
, and
Woodhead
,
B.
, “
The Factors that Affect the Defect Sizing Capabilities of the Magnetic Flux Leakage Technique
,”
Swansea
, West Glamorgan SA5 8JF.
6.
Mandal
,
K.
,
Dufour
,
D.
,
Krause
,
T. W.
, and
Atherton
,
D. L.
,
1997
, “
Investigations of Magnetic Flux Leakage and Magnetic Barkhausen Noise Signals From Pipeline Steel
,”
J. Phys. D: Appl. Phys.
,
30
(
6
), pp.
962
973
. 10.1088/0022-3727/30/6/009
7.
Eichenberger
,
J.
,
Atherton
,
D. L.
,
Mandal
,
K.
,
Corey
,
A.
,
Loukas
,
M. E.
, and
Weyman
,
P.
,
1997
, “
The Effects of Defect Depth and Bending Stress on Magnetic Barkhausen Noise and Flux-Leakage Signals
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
1976
1983
. 10.1088/0022-3727/30/14/004
8.
Singh
,
W. S.
,
Rao
,
B. P. C.
,
Sasi
,
B.
,
Vaidyanathan
,
S.
,
Jayakumar
,
T.
, and
Raj
,
B.
,
2006
, “
Magnetic Flux Leakage NDE Using Giant-Magneto-Resistive (GMR) Sensors
,”
Proceedings of National Seminar on Non-Destructive Evaluation
,
Hyderabad, India
,
Dec. 7–9
.
9.
Babbar
,
V.
, and
Clapham
,
L.
,
2004
, “
Residual Magnetic Flux Leakage: A Possible Tool for Studying Pipeline Defects
,”
J. Nondestruct. Eval.
,
22
(
4
), pp.
117
125
. 10.1023/B:JONE.0000022031.16580.5a
10.
Chen
,
Z.
,
Preda
,
G.
,
Mihalache
,
O.
, and
Miya
,
K.
,
2002
, “
Reconstruction of Crack Shapes From the MFLT Signals by Using a Rapid Forward Solver and an Optimization Approach
,”
IEEE Trans. Magn.
,
38
(
2
), pp.
1025
1028
. 10.1109/20.996263
11.
Afzal
,
M.
, and
Udpa
,
S.
,
2002
, “
Advanced Signal Processing of Magnetic Flux Leakage Data Obtained From Seamless Gas Pipeline
,”
NDE&T International
,
35
(
7
), pp.
449
457
. 10.1016/s0963-8695(02)00024-5
12.
Shcerbinin
,
A. P. V. E.
,
1972
, “
Influence of the Extension of Defect on the Magnitude of its Magnetic Field
,”
Defektoskopiya
.
13.
Naoya Kasai
,
K. S.
, and
Mizoguchim
,
T.
,
2006
, “
The Residual Magnetic Flux Leakage Technique for Surface Flaws With the Magneto-Impedance Sensor and Wavelet Analysis
,”
JHPI
,
44
(
1
), pp.
47
54
.
14.
Usarek
,
Z.
, and
Warnke
,
K.
,
2017
, “
Inspection of Gas Pipelines Using Magnetic Flux Leakage Technology
,”
Adv. Mater. Sci.
,
17
(
3
), p.
53
. 10.1515/adms-2017-0014
15.
Rao
,
B. P. C.
,
2012
, “
Magnetic Flux Leakage Techniques: Basics
,”
J. Nondestruct. Test. Eval.
,
11
(
3
), pp.
7
17
.
16.
Suresh
,
V.
, and
Abudhahir
,
A.
,
2016
, “
An Analytical Model for Prediction of Magnetic Flux Leakage From Surface Defects in Ferromagnetic Tubes
,”
Meas. Sci. Rev.
,
16
(
1
), pp.
8
13
. 10.1515/msr-2016-0002
17.
Göktepe
,
M.
,
2013
, “
Investigation of Bx and By Components of the Magnetic Flux Leakage in Ferromagnetic Laminated Sample
,”
Adv. Mater. Sci. Eng.
,
2013
, pp.
1
8
. 10.1155/2013/708396
18.
Mandal
,
K.
, and
Atherton
,
D. L.
,
1998
, “
A Study of Magnetic Flux-Leakage Signals
,”
J. Phys. D: Appl. Phys.
,
31
(
22
), pp.
3211
3217
. 10.1088/0022-3727/31/22/006
19.
Augustyniak
,
M.
, and
Usarek
,
Z.
,
2016
, “
Finite Element Method Applied in Electromagnetic NDTE: A Review
,”
J. Nondestruct. Eval.
,
35
(
3
), pp.
1
15
. 10.1007/s10921-016-0356-6
20.
Nagu
,
S.
,
2013
, “
Finite Element Modeling of Magnetic Flux Leakage Technique in Plates With Defect and Without Defect
,”
Int. J. Mod. Eng. Res.
,
3
, pp.
3452
3455
.
21.
Kemppainen
,
M.
,
2006
,
Realistic Artificial Flaws for NDE Qualification—A Novel Manufacturing Method Based on Thermal Fatigue
,
Helsinki University of Technology
,
Espoo, Finland
.
22.
Method
,
M.
,
Hall
,
T.
, and
Texas
,
A.
,
1996
, “
H-p Clouds—An h-p Meshless Method
,”
Texas Inst. Comput. Appl. Math.
,
705
.
23.
Ding
,
H.
, and
Shu
,
C.
,
2004
, “
Development of Least-Square-Based Two-Dimensional Finite-Difference Schemes and Their Application to Simulate Natural Convection in a Cavity
,”
Comp. Fluids
,
33
, pp.
137
154
. 10.1016/s0045-7930(03)00036-7
24.
Sukumar
,
N.
,
2003
, “
Voronoi Cell Finite Difference Method for the Diffusion Operator on Arbitrary Unstructured Grids
,”
Int. J. Numer. Meth. Eng.
,
57
(
1
), pp.
1
34
.
25.
Lu
,
Y.
,
Hu
,
A.
,
Liu
,
Y.
, and
Han
,
C.
,
2016
, “
A Meshless Method Based on Moving Least Squares for the Simulation of Free Surface Flows
,”
J. Zhejiang Univ. Sci A
,
17
(
2
), pp.
130
143
. 10.1631/jzus.a1500053
26.
Cheng
,
Y.
,
Tian
,
L.
,
Yin
,
C.
,
Huang
,
X.
,
Cao
,
J.
, and
Bai
,
L.
,
2018
, “
Research on Crack Detection Applications of Improved PCNN Algorithm in MOI Nondestructive Test Method
,”
Neurocomputing
,
277
, pp.
249
259
. 10.1016/j.neucom.2017.02.099
27.
Tian
,
L.
,
Cheng
,
Y.
,
Yin
,
C.
,
Ding
,
D.
,
Song
,
Y.
, and
Bai
,
L.
,
2017
, “
Design of the MOI Method Based on the Artificial Neural Network for Crack Detection
,”
Neurocomputing
,
226
, pp.
80
89
. 10.1016/j.neucom.2016.11.032
You do not currently have access to this content.