Abstract

Smart material systems, such as piezoelectric actuators and sensors, are pivotal in vibration control due to their dynamic responsiveness and energy efficiency. In active vibration control (AVC), the optimal placement of piezoelectric patches is crucial for enhancing control efficiency, stability, and multimode vibration suppression. This article introduces a simplified methodology for identifying the optimal placement of piezoelectric patches on plate-type structures to manage multiple vibration modes. The approach utilizes displacement eigenfunctions to map the strain profile's maxima across the plate's length and width. A genetic algorithm (GA) is used to pinpoint the x and y coordinates corresponding to these maximum strain areas, representing the ideal patch placement positions. The study examines five boundary conditions: simply supported, clamped, and free edges. The secondary analysis validates the selected locations by considering controllability and observability. This method efficiently explores the design space, converging on locations that produce the highest strain, thereby improving vibration control. The proposed methodology strategically places the piezoelectric patches, as the results show. In most cases, these positions align closely with the optimal patch locations identified by other established methods. The results confirm the validity of the proposed approach. This research offers a reliable and computationally efficient solution for optimizing active vibration control in smart structures.

References

1.
Bachmann
,
F.
,
Bergamini
,
A. E.
, and
Ermanni
,
P.
,
2012
, “
Optimum Piezoelectric Patch Positioning: A Strain Energy-Based Finite Element Approach
,”
J. Intell. Mater. Syst. Struct.
,
1
(
1
), pp.
1
17
.
2.
Fleming
,
A. J.
,
Behrens
,
S.
, and
Moheimani
,
S. O. R.
,
2003
, “
Reducing the Inductance Requirements of Piezoelectric Shunt Damping Systems
,”
Smart Mater. Struct.
,
12
(
1
), pp.
57
64
.
3.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
4.
Crawley
,
E. F.
, and
Lazarus
,
K. B.
,
1991
, “
Induced Strain Actuation of Isotropic and Anisotropic Plates
,”
AIAA J.
,
29
(
6
), pp.
944
951
.
5.
Sievert
,
L.
,
Stancioiu
,
D.
, and
Matthews
,
C.
,
May 4, 2021
, “
Active Vibration Control of a Small-Scale Flexible Structure Subject to Moving-Loads and Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061010
.
6.
Liu
,
Y. C.
, and
Yang
,
S. M.
,
1993
, “
Three Simple and Effective Methods for Vibration Control of Slewing Flexible Structures
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
4
), pp.
725
730
.
7.
Yang
,
S. M.
, and
Lee
,
Y. J.
,
1993
, “
Optimization of Non-Collocated Sensor/Actuator Location and Feedback Gain in Control Systems
,”
Smart Mater. Struct.
,
2
(
1
), pp.
96
102
.
8.
Chhabra
,
D.
,
Bhushan
,
G.
, and
Chandna
,
P.
,
2016
, “
Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control via Modified Control Matrix and Singular Value Decomposition Approach Using Modified Heuristic Genetic Algorithm
,”
Mech. Adv. Mater. Struct.
,
23
(
3
), pp.
272
280
.
9.
Jia
,
S.
,
Jia
,
Y.
,
Xu
,
S.
, and
Hu
,
Q.
,
2016
, “
Optimal Placement of Sensors and Actuators for Gyroelastic Body Using Genetic Algorithms
,”
J. Aircraft
,
53
(
6
), pp.
2472
2488
.
10.
Padoin
,
E.
,
Fonseca
,
J. S. O.
,
Perondi
,
E. A.
, and
Menuzzi
,
O.
,
2015
, “
Optimal Placement of Piezoelectric Macro Fiber Composite Patches on Composite Plates for Vibration Suppression
,”
Latin Am. J. Solids Struct.
,
12
(
5
), pp.
925
947
.
11.
Bruant
,
I.
,
Gallimard
,
L.
, and
Nikoukar
,
S.
,
2010
, “
Optimal Piezoelectric Actuator and Sensor Location for Active Vibration Control, Using Genetic Algorithm
,”
J. Sound Vib.
,
329
(
16
), pp.
1615
1635
.
12.
Chakraborty
,
D.
,
Rathore
,
P. K.
, and
Roy
,
T.
,
2012
, “
Optimal Actuator Locations in Smart Fiber Reinforced Polymer Structures Using Genetic Algorithm
,”
Appl. Mech. Mater.
,
110–116
(
1
), pp.
1278
1283
. www.scientific.net/AMM.110-116.1278
13.
Biglar
,
M.
,
Gromada
,
M.
,
Stachowicz
,
F.
, and
Trzepieciński
,
T.
,
2015
, “
Optimal Configuration of Piezoelectric Sensors and Actuators for Active Vibration Control of a Plate Using a Genetic Algorithm
,”
Acta Mech.
,
226
(
11
), pp.
3451
3462
.
14.
Loghmani
,
A.
,
Danesh
,
M.
, and
Keshmiri
,
M.
,
2015
, “
Modal Structural Acoustic Sensing With Minimum Number of Optimally Placed Piezoelectric Sensors
,”
J. Sound Vib.
,
363
(
1
), pp.
345
358
.
15.
Ferrari
,
G.
, and
Amabili
,
M.
,
2015
, “
Active Vibration Control of a Sandwich Plate by Non-Collocated Positive Position Feedback
,”
J. Sound Vib.
,
342
(
1
), pp.
44
56
.
16.
Soubhia
,
A. L.
, and
Serpa
,
A. L.
,
2018
, “
Discrete Optimization for Actuator and Sensor Positioning for Vibration Control Using Genetic Algorithms
,”
J. Vib. Control
,
24
(
20
), pp.
4050
4064
.
17.
Daraji
,
A. H.
, and
Hale
,
J. M.
,
2012
, “
Active Vibration Reduction of a Flexible Structure Bonded With Optimized Piezoelectric Pairs Using Half and Quarter Chromosomes in Genetic Algorithms
,”
J. Phys.: Conf. Ser.
,
382
(
1
), p.
012039
.
18.
Daraji
,
A. H.
, and
Hale
,
J. M.
,
2012
, “
Conditional Filter for Reduction of the Search Space in Genetic Algorithm Optimization of Sensor and Actuator Location in Active Vibration Control
,”
Proc. Int. Congr. Sound Vib. (ICSV)
,
19
(
2
), pp.
1199
1211
.
19.
Gomes
,
G. F.
,
da Cunha
,
S. S.
,
da Silva Lopes Alexandrino
,
P.
,
Silva de Sousa
,
B.
, and
Ancelotti
,
A. C.
,
2018
, “
Sensor Placement Optimization Applied to Laminated Composite Plates Under Vibration
,”
Struct. Multidiscipl. Optim.
,
58
(
5
), pp.
2099
2118
.
20.
Liu
,
W.
,
Hou
,
Z. K.
, and
Demetriou
,
M. A.
,
2006
, “
A Computational Scheme for the Optimal Sensor/Actuator Placement of Flexible Structures Using Spatial H2 Measures
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
881
895
.
21.
Sadri
,
A. M.
,
Wright
,
J. R.
, and
Wynne
,
R.
,
1999
, “
Modeling and Optimal Placement of Piezoelectric Actuators in Isotropic Plates Using Genetic Algorithm
,”
Smart Mater. Struct.
,
8
(
4
), pp.
490
498
.
22.
Gao
,
F.
,
Shen
,
Y.
, and
Li
,
L.
,
2000
, “
The Optimal Design of Piezoelectric Actuators for Plate Vibroacoustic Control Using Genetic Algorithms With Immune Diversity
,”
Smart Mater. Struct.
,
9
(
4
), pp.
485
491
.
23.
Caruso
,
G.
,
Galeani
,
S.
, and
Menini
,
L.
,
2003
, “
Active Vibration Control of an Elastic Plate Using Multiple Piezoelectric Sensors and Actuators
,”
Simul. Model. Pract. Theory
,
11
(
5–6
), pp.
403
419
.
24.
Rodriguez
,
J.
,
Collet
,
M.
, and
Chesne
,
S.
,
2022
, “
Active Vibration Control on a Smart Composite Structure Using Modal-Shaped Sliding Mode Control
,”
ASME J. Vib. Acoust.
,
144
(
1
), p.
011015
.
25.
Daraji
,
A. H.
,
Hale
,
J. M.
, and
Ye
,
J.
,
2018
, “
New Methodology for Optimal Placement of Piezoelectric Sensor/Actuator Pairs for Active Vibration Control of Flexible Structures
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011015
.
26.
Moheimani
,
S. O. R.
,
Halim
,
D.
, and
Fleming
,
A. J.
,
2003
, “
Spatial Control of Vibration
,”
Ser. Stab., Vib. Control Syst.
,
10
(
1
), pp.
1
255
.
You do not currently have access to this content.