Abstract

Load prediction technology offers significant opportunities for ensuring optimal energy distribution, enhancing grid stability, and supporting sustainable power system management. It remains challenging due to the high requirement of accurately capturing the complex and dynamic relationships between historical load data and various influencing factors. This study proposes a novel approach that integrates the Kolmogorov–Arnold network (KAN) with a convolutional neural network (CNN)-based transformer encoder to achieve highly accurate and efficient load prediction. Specifically, KAN is designed to capture the intricate relationships between diverse influencing factors, including geographical features, user behaviors, and environmental conditions. The CNN-based transformer encoder leverages temporal dependencies and spatial correlations inherent in historical load data, providing robust predictions even under varying conditions. Through comprehensive experiments on real-world datasets, the proposed hybrid model demonstrates superior performance compared to traditional standalone deep learning architectures. The findings suggest that this combined methodology offers a viable solution for enhancing the accuracy and reliability of load prediction.

References

1.
Eren
,
Y.
, and
Küçükdemiral
,
İ.
,
2024
, “
A Comprehensive Review on Deep Learning Approaches for Short-Term Load Prediction
,”
Renew. Sustain. Energy Rev.
,
189
(
Part B
), p.
114031
.
2.
Li
,
X.
,
Wang
,
Y.
,
Ma
,
G.
,
Chen
,
X.
,
Shen
,
Q.
, and
Yang
,
B.
,
2022
, “
Electric Load Prediction Based on Long-Short-Term-Memory Network Via Simplex Optimizer During COVID-19
,”
Energy Rep.
,
8
(
S6
), pp.
1
12
.
3.
Yang
,
D.
,
Guo
,
J.
,
Sun
,
S.
,
Han
,
J.
, and
Wang
,
S.
,
2022
, “
An Interval Decomposition-Ensemble Approach With Data-Characteristic-Driven Reconstruction for Short-Term Load Prediction
,”
Appl. Energy
,
306
(
PA
), p.
117992
.
4.
Habbak
,
H.
,
Mahmoud
,
M.
,
Metwally
,
K.
,
Fouda
,
M. M.
, and
Ibrahem
,
M. I.
,
2023
, “
Load Prediction Techniques and Their Applications in Smart Grids
,”
Energies
,
16
(
3
), p.
1480
.
5.
Akhtar
,
S.
,
Shahzad
,
S.
,
Zaheer
,
A.
,
Ullah
,
H. S.
,
Kilic
,
H.
,
Gono
,
R.
,
Jasiński
,
M.
, and
Leonowicz
,
Z.
,
2023
, “
Short-Term Load Prediction Models: A Review of Challenges, Progress, and the Road Ahead
,”
Energies
,
16
(
10
), p.
4060
.
6.
Zhang
,
S.
,
Chen
,
R.
,
Cao
,
J.
, and
Tan
,
J.
,
2023
, “
A CNN and LSTM-Based Multi-task Learning Architecture for Short and Medium-Term Electricity Load Prediction
,”
Electr. Power Syst. Res.
,
222
, p.
109507
.
7.
Pan
,
C.
,
Zhang
,
C.
,
Ngai
,
E. C. H.
,
Liu
,
J.
, and
Li
,
B.
,
2024
, “
HALO: HVAC Load Prediction With Industrial IoT and Local-Global-Scale Transformer
,”
IEEE Internet Things J.
,
11
(
17
), pp.
28307
28319
.
8.
Zha
,
W.
,
Ji
,
Y.
, and
Liang
,
C.
,
2024
, “
Short-Term Load Prediction Method Based on Secondary Decomposition and Improved Hierarchical Clustering
,”
Res. Eng.
,
22
, p.
101993
.
9.
Sayed
,
H. A.
,
William
,
A.
, and
Said
,
A. M.
,
2023
, “
Smart Electricity Meter Load Prediction in Dubai Using MLR, ANN, RF, and ARIMA
,”
Electronics
,
12
(
2
), p.
389
.
10.
Silfiani
,
M.
,
Aprillia
,
H.
, and
Fitriani
,
Y.
,
2023
, “
Comparing Various Combined Techniques at Seasonal Autoregressive Integrated Moving Average (SARIMA) for Electrical Load Prediction
,”
International Seminar on Intelligent Technology and Its Applications
,
Surabaya, Indonesia
,
July 26–27
, pp.
376
381
.
11.
Chakhchoukh
,
Y.
,
Panciatici
,
P.
, and
Mili
,
L.
,
2011
, “
Electric Load Prediction Based on Statistical Robust Methods
,”
IEEE Trans. Power Syst.
,
26
(
3
), pp.
982
991
.
12.
Lee
,
C. M.
, and
Ko
,
C. N.
,
2011
, “
Short-Term Load Prediction Using Lifting Scheme and ARIMA Models
,”
Expert Syst. Appl.
,
38
(
5
), pp.
5902
5911
.
13.
Khayat
,
A.
,
Kissaoui
,
M.
,
Bahatti
,
L.
,
Raihani
,
A.
,
Errakkas
,
K.
, and
Atifi
,
Y.
,
2024
, “
Microgrid Short-Term Electrical Load Prediction Using Machine Learning Models
,”
2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)
,
Fez, Morocco
,
May 16–17
, pp.
1
7
.
14.
Tziolis
,
G.
,
Lopez-Lorente
,
J.
,
Baka
,
M. I.
,
Koumis
,
A.
,
Livera
,
A.
,
Theocharides
,
S.
,
Makrides
,
G.
, and
Georghiou
,
G. E.
,
2024
, “
Direct Short-Term Net Load Prediction in Renewable Integrated Microgrids Using Machine Learning: A Comparative Assessment
,”
Sustain. Energy Grids Netw.
,
37
, p.
101256
.
15.
Xiao
,
X.
,
Mo
,
H.
,
Zhang
,
Y.
, and
Shan
,
G.
,
2022
, “
Meta-ANN—A Dynamic Artificial Neural Network Refined by Meta-learning for Short-Term Load Prediction
,”
Energy
,
246
, p.
123418
.
16.
Saglam
,
M.
,
Lv
,
X.
,
Spataru
,
C.
, and
Karaman
,
O. A.
,
2024
, “
Instantaneous Electricity Peak Load Prediction Using Optimization and Machine Learning
,”
Energies
,
17
(
4
), p.
777
.
17.
Kim
,
Y.
,
Son
,
H. G.
, and
Kim
,
S.
,
2019
, “
Short-Term Electricity Load Prediction for Institutional Buildings
,”
Energy Reports
,
5
, pp.
1270
1280
.
18.
Shohan
,
M. J. A.
,
Faruque
,
M. O.
, and
Foo
,
S. Y.
,
2022
, “
Prediction of Electric Load Using a Hybrid LSTM-Neural Prophet Model
,”
Energies
,
15
(
6
), p.
2158
.
19.
Huang
,
Y.
,
Hasan
,
N.
,
Deng
,
C.
, and
Bao
,
Y.
,
2022
, “
Multivariate Empirical Mode Decomposition Based Hybrid Model for Day-Ahead Peak Load Prediction
,”
Energy
,
239
, p.
122245
.
20.
Sulaiman
,
S. M.
,
Jeyanthy
,
P. A.
,
Devaraj
,
D.
, and
Shihabudheen
,
K. V.
,
2022
, “
A Novel Hybrid Short-Term Electricity Prediction Technique for Residential Loads Using Empirical Mode Decomposition and Extreme Learning Machines
,”
Comput. Electr. Eng.
,
98
, p.
107663
.
21.
Rubasinghe
,
O.
,
Zhang
,
X.
,
Chau
,
T. K.
,
Chow
,
Y. H.
,
Fernando
,
T.
, and
Iu
,
H. H.-C.
,
2023
, “
A Novel Sequence to Sequence Data Modelling-Based CNN-LSTM Algorithm for Three Years Ahead Monthly Peak Load Prediction
,”
IEEE Trans. Power Syst.
,
39
(
1
), pp.
456
467
.
22.
Meng
,
Y.
,
Yun
,
S.
,
Zhao
,
Z.
,
Guo
,
J.
,
Li
,
X.
,
Ye
,
D.
,
Jia
,
L.
, and
Yang
,
L.
,
2023
, “
Short-Term Electricity Load Prediction Based on a Novel Data Preprocessing System and Data Reconstruction Strategy
,”
J. Build. Eng.
,
77
, p.
105861
.
23.
Lee
,
J.
, and
Cho
,
Y.
,
2022
, “
National-Scale Electricity Peak Load Prediction: Traditional, Machine Learning, or Hybrid Model
,”
Energy
,
239
, p.
122366
.
24.
Alberg
,
D.
, and
Last
,
M.
,
2018
, “
Short-Term Load Prediction in Smart Meters With Sliding Window-Based ARIMA Algorithms
,”
Vietnam J. Comput. Sci.
,
5
(
3–4
), pp.
241
249
.
25.
Fan
,
G.
,
Han
,
Y.
,
Li
,
J.
,
Peng
,
L.
,
Yeh
,
Y.
, and
Hong
,
W.
,,
2024
, “
A Hybrid Model for Deep Learning Short-Term Power Load Forecasting Based on Feature Extraction Statistics Techniques
,”
Expert Syst. Appl.
,
238
(Part C), p.
122012
.
26.
Jian
,
S.
, and
Teh
,
J.
,
2024
, “
Load Prediction for Regional Integrated Energy System Based on Complementary Ensemble Empirical Mode Decomposition and Multi-model Fusion
,”
Appl. Energy
,
353
(
Part B
), p.
122146
.
27.
Zachary
,
L.
,
2017
, The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and Slippery, arXiv 2017, 1606.03490.
28.
Hu
,
M.
,
Stephen
,
B.
,
Browell
,
J.
,
Haben
,
S.
, and
Wallom
,
D. C. H.
,
2023
, “
Impacts of Building Load Dispersion Level on Its Load Prediction Accuracy: Data or Algorithms? Importance of Reliability and Interpretability in Machine Learning
,”
Energy Build.
,
285
, p.
112896
.
29.
Dong
,
Y.
,
Ma
,
X.
, and
Fu
,
T.
,
2021
, “
Electrical Load Prediction: A Deep Learning Approach Based on K-Nearest Neighbors
,”
Appl. Soft Comput.
,
99
, p.
106900
.
You do not currently have access to this content.