Abstract

Demand for superconducting coils is growing significantly in medical use, maglev trains, or motors. The quench phenomenon is a significant issue, as it involves the sudden loss of superconductivity. The aim of this study is to elucidate the quench phenomenon and to mitigate its occurrence. We created an ellipse-shaped model coil, and a large-scale finite element method (FEM) analysis was done to calculate details of the stress state caused by thermal stress and electromagnetic force during excitation. We estimated where the concentrated strain energy was and the generation of energy loss. On the other hand, acoustic emission (AE) measurement was applied to this model coil during a process of over-excitation testing called “training.” AE is emitted as a high-frequency sound wave when an elastic body is deformed by an external force. The entire training experiment ended after more than 10 quenches. AE with high amplitude occurred just before a quench, and the location of AE source results frequently appeared at locations identified to be with high internal stresses from analysis. Both the analytical and experimental results of this study indicate that strain energy density concentration during excitation increases the risk of quench.

References

1.
Devred
,
A.
,
1990
, “
Quench Origins
,”
The Physics of Particles Accelerators: Based in Part on the U.S. Particle Accelerator School (USPAS) Seminars and Courses in 1989 and 1990
, pp.
1262
1308
.
2.
Wang
,
Q.
,
Dai
,
Y.
,
Zhao
,
B.
,
Song
,
S.
,
Wang
,
C.
,
Li
,
L.
,
Cheng
,
J.
, et al
,
2012
, “
A Superconducting Magnet System for Whole-Body Metabolism Imaging
,”
IEEE Trans. Appl. Supercond.
,
22
(
3
), p.
4400905
.
3.
Kasaba
,
K.
, and
Shoji
,
T.
,
1993
, “
Stress Analysis and Evaluation of Rigidity and Stability of Superconducting Magnet
,”
J. Cryog. Soc. Jpn.
,
28
(
12
), pp.
671
680
.
4.
Tral
,
F.
,
2013
, “
Mechanical Design of Superconducting Accelerator Magnets
,”
CERN-2014-005
, pp.
293
327
.
5.
Ferradas Troitino
,
J.
,
Bajas
,
H.
,
Bianchi
,
L.
,
Castaldo
,
B.
,
Ferracin
,
P.
,
Guinchard
,
M.
,
Izquierdo
,
S.
, et al
,
2021
, “
A Methodology for the Analysis of the Three-Dimensional Mechanical Behavior of a Nb3Sn Superconducting Accelerator Magnet During a Quench
,”
Supercond. Sci. Technol.
,
34
(
8
), p.
084003
.
6.
Tsukamoto
,
O.
,
Sinclair
,
M. W.
,
Steinhoff
,
M. F.
, and
Iwasa
,
Y.
,
1981
, “
Origins of Acoustic Emission in Superconducting Wires
,”
Appl. Phys. Lett.
,
38
(
9
), pp.
718
720
.
7.
Tsukamoto
,
O.
,
Maguire
,
J. F.
,
Bobrov
,
E. S.
, and
Iwasa
,
Y.
,
1981
, “
Identification of Quench Origins in a Superconductor With Acoustic Emission and Voltage Measurements
,”
Appl. Phys. Lett.
,
39
(
2
), p.
172
174
.
8.
Sinclair
,
M. W.
,
Tsukamoto
,
O.
, and
Iwasa
,
Y.
,
1981
, “
Acoustic Emission From Superconducting Magnets and Superconductors
,”
IEEE Trans. Magn.
,
17
(
1
), pp.
1064
1067
.
9.
Tsukamoto
,
O.
, and
Iwasa
,
Y.
,
1982
, “
Acoustic Emission Triangulation of Disturbances and Quenches in a Superconductor and a Superconducting Magnet
,”
Appl. Phys. Lett.
,
40
(
6
), pp.
538
540
.
10.
Tsukamoto
,
O.
, and
Iwasa
,
Y.
,
1983
, “
Sources of Acoustic Emission in Superconducting Magnets
,”
J. Appl. Phys.
,
54
(
2
), pp.
997
1007
.
11.
Nishijima
,
S.
,
Iwasaki
,
H.
, and
Okada
,
T.
,
1985
, “
Study of Disturbances in Superconducting Magnets by Acoustic Emission Method
,”
IEEE Trans. Magn.
,
21
(
2
), pp.
388
391
.
12.
Maeda
,
H.
,
Koizumi
,
M.
, and
Murase
,
S.
,
1983
, “
Application of the Acoustic Emission Technique to the React and Wind Processed Nb3Sn Superconducting Magnet
,”
Cryogenics
,
23
(
8
), pp.
444
448
.
13.
Arai
,
K.
,
Yamaguchi
,
H.
,
Kaiho
,
K.
,
Ninomiya
,
A.
,
Ishigohka
,
T.
, and
Saitoh
,
T.
,
2001
, “
Acoustic Emission Induced From Alternating Current Superconducting Coils Resulting From Vibration of Windings
,”
IEEE Trans. Appl. Supercond.
,
11
(
1
), pp.
1701
1704
.
14.
Arai
,
K.
,
Ninomiya
,
A.
,
Ishigohka
,
T.
,
Takano
,
K.
,
Matsui
,
K.
,
Michael
,
P. C.
,
Vieira
,
R. F.
, et al
,
2002
, “
Acoustic Emission During DC Operations of the ITER Central Solenoid Model Coil
,”
IEEE Trans. Appl. Supercond.
,
12
(
1
), pp.
504
507
.
15.
Ninomiya
,
A.
,
Arai
,
K.
,
Takano
,
K.
,
Ishigohka
,
T.
,
Kaiho
,
K.
,
Nakajima
,
H.
,
Tsuji
,
H.
,
Okuno
,
K.
,
Martovetsky
,
N.
, and
Rodin
,
I.
,
2003
, “
Diagnosis of ITER's Large Scale Superconducting
,”
IEEE Trans. Appl. Supercond.
,
13
(
2
), pp.
1408
1411
.
16.
Aoki
,
M.
, and
Matsui
,
Y.
,
2018
, “
Locating a Mechanical Disturbance Source in a Superconducting Coil Using Pickup Coils on a Diaphragm
,”
IEEE Trans. Appl. Supercond.
,
28
(
2
), pp.
1
5
.
17.
Marchevsky
,
M.
,
Ambrosio
,
G.
,
Lamm
,
M.
,
Tartaglia
,
M. A.
, and
Lopes
,
M. L.
,
2016
, “
Localization of Quenches and Mechanical Disturbances in the Mu2e Transport Solenoid Prototype Using Acoustic Emission Technique
,”
IEEE Trans. Appl. Supercond.
,
26
(
4
),
1
5
.
18.
Marchevsky
,
M.
, and
Gourlay
,
S. A.
,
2017
, “
Acoustic Thermometry for Detecting Quenches in Superconducting Coils and Conductor Stacks
,”
Appl. Phys. Lett.
,
110
(
1
), p.
012601
.
19.
Marchevsky
,
M.
,
Hershkovitz
,
E.
,
Wang
,
X.
,
Gourlay
,
S. A.
, and
Prestemon
,
S.
,
2018
, “
Quench Detection for High-Temperature Superconductor Conductors Using Acoustic Thermometry
,”
IEEE Trans. Appl. Supercond.
,
28
(
4
),
1
5
.
20.
Marchevsky
,
M.
,
2021
, “
Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets
,”
MDPI Instrum.
,
5
(
3
), p.
27
.
21.
Hoang
,
D.
,
Boffo
,
C.
,
Tran
,
N.
,
Krave
,
S.
,
Kazi
,
S.
,
Stoynev
,
S.
, and
Marinozzi
,
V.
,
2021
, “
Intelliquench: An Adaptive Machine Learning System for Detection of Superconducting Magnet Quenches
,”
IEEE Trans. Appl. Supercond.
,
31
(
5
), pp.
1
5
.
22.
Vallen
,
Hartmut
,
2006
,
Acoustic Emission Testing: Fundamentals, Equipment, Applications
,
Castell
.
23.
Suzuki
,
M.
,
Ohyama
,
T.
,
Akiba
,
H.
,
Noguchi
,
H.
, and
Yoshimura
,
S.
,
2002
, “
Development of Fast and Robust Parallel CGCG Solver for Large Scale Finite Element Analysis
,”
Trans. Jpn. Soc. Mech. Eng. Ser. A
,
68
(
671
), pp.
1010
1017
.
24.
Akiba
,
H.
,
Gupta
,
M.
,
Gunnels
,
J. A.
,
Austel
,
V.
,
Sabharwal
,
Y.
,
Garg
,
R.
,
Kato
,
S.
, et al
,
2006
, “
Large Scale Drop Impact Analysis of Mobile Phone Using ADVC on Blue Gene/L
,”
IEEE, Proceedings of the International Conference on High Performance Computing Networking and Storage (SC06)
, p.
46
.
25.
Funaki
,
O.
,
Sumiyoshi
,
F.
, and
Sangyotosho
,
1995
,
Tashin-sen To Doutai
,
Sangyoutosho
,
Japan
.
26.
Grosse
,
C. U.
, and
Optus
,
M.
,
2008
,
Acoustic Emission Testing
,
Springer
,
Germany
, Chap. 6.
27.
Thenikl
,
T.
,
Altmann
,
D.
, and
Vallen
,
H.
,
2016
, “
Quantifying Location Errors
,”
Proceedings of 32nd European Conference on Acoustic Emission Testing
,
e-Journal of Nondestructive Testing
, Vol.
21
(
11
), pp.
495
502
. https://www.ndt.net/?id=20358
28.
Watabe
,
K.
,
Takamine
,
H.
,
Nishida
,
T.
, and
Shiotani
,
T.
,
2017
, “
Novel Nondestructive Technique of Internal Deterioration in Concrete Deck With Elastic Wave Approaches
,”
Proceedings of the 12th World Congress on Engineering Asset Management & 13th International Conference on Vibration Engineering and Technology of Machinery
.
29.
Kobayashi
,
Y.
, and
Shiotani
,
T.
,
2016
, “Computerized AE Tomography,”
Innovative AE and NDT Techniques for On-Site Measurement of Concrete and Masonry Structures
,
Springer Dordrecht
,
Netherlands
, pp.
47
68
.
You do not currently have access to this content.