Graphical Abstract Figure

Roughness induced attenuation of reflected waves.

Graphical Abstract Figure

Roughness induced attenuation of reflected waves.

Close modal

Abstract

An understanding of the influence of surface roughness on wave scattering and accurate predictions of wave amplitudes are crucial for quantitative ultrasonic nondestructive testing and evaluation. In this work, the effects of surface roughness on the reflection coefficient are investigated using a quasi-Monte Carlo (QMC) method. The wave fields reflected from smooth and rough interfaces with an immersion transducer are modeled using the Rayleigh integral method, and the solutions are efficiently calculated using the QMC method for interfaces constructed using pseudo-random samples. The reflected wave fields are simulated and presented, and the properties of coherent and incoherent waves affected by interface roughness are discussed. The surface roughness–induced attenuation of reflected waves is calculated using the ratio of received pressures for waves reflected from rough and smooth interfaces, and the predicted results are compared with those obtained using other recognized methods. It is shown that at low levels of roughness, excellent agreement is obtained between the results from the QMC method and the well-known Kirchhoff approximation, while for high levels of roughness, where the Kirchhoff theory gives pessimistic results, the predicted values agree well with those simulated using a finite element modeling approach, thus verifying the effectiveness of the proposed method.

References

1.
Benstock
,
D.
,
Cegla
,
F.
, and
Stone
,
M.
,
2014
, “
The Influence of Surface Roughness on Ultrasonic Thickness Measurements
,”
J. Acoust. Soc. Am.
,
136
(
6
), pp.
3028
3039
.
2.
Wang
,
Z.
, and
Cheng
,
J.
,
2021
, “
Numerical and Analytical Study for Ultrasonic Testing of Internal Delamination Defects Considering Surface Roughness
,”
Ultrasonics
,
110
, p.
106290
.
3.
Hu
,
Y.
,
Chen
,
P.
,
Peng
,
X.
,
Yin
,
A.
, and
Yu
,
X.
,
2023
, “
Measurement of Axial Stress in High-Strength Short Bolts Using Ultrasonic Attenuation
,”
Meas. Sci. Technol.
,
34
(
8
), p.
085013
.
4.
Nagy
,
P. B.
, and
Rose
,
J. H.
,
1993
, “
Surface Roughness and the Ultrasonic Detection of Subsurface Scatterers
,”
J. Appl. Phys.
,
73
(
2
), pp.
566
580
.
5.
Shi
,
F.
,
2021
, “
Variance of Elastic Wave Scattering From Randomly Rough Surfaces
,”
J. Mech. Phys. Solids
,
155
, p.
104550
.
6.
Nagy
,
P. B.
, and
Adler
,
L.
,
1987
, “
Surface Roughness Induced Attenuation of Reflected and Transmitted Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
82
(
1
), pp.
193
197
.
7.
Liu
,
Y.
,
Wang
,
C.
, and
Huang
,
F.
,
2000
, “
Coherent Reflection From a Rough Interface Over an Inhomogeneous Transition Fluid Layer
,”
J. Comput. Acoust.
,
08
(
03
), pp.
401
414
.
8.
Choi
,
W.
,
Shi
,
F.
,
Lowe
,
M. J. S.
,
Skelton
,
E. A.
,
Craster
,
R. V.
, and
Daniels
,
W. L.
,
2018
, “
Rough Surface Reconstruction of Real Surfaces for Numerical Simulations of Ultrasonic Wave Scattering
,”
NDT & E Int.
,
98
, pp.
27
36
.
9.
Chimenti
,
D. E.
, and
Lobkis
,
O. I.
,
1998
, “
The Effect of Rough Surfaces on Guided Waves in Plates
,”
Ultrasonics
,
36
(
1
), pp.
155
162
.
10.
Darmon
,
M.
,
Dorval
,
V.
, and
Baqué
,
F.
,
2020
, “
Acoustic Scattering Models From Rough Surfaces: A Brief Review and Recent Advances
,”
Appl. Sci.-Basel
,
10
(
22
), p.
8305
.
11.
Wilhjelm
,
J. E.
,
Pedersen
,
P. C.
,
Jacobsen
,
S. M.
, and
Martinsen
,
K.
,
1998
, “
Echo Signal From Rough Planar Interfaces Influence of Roughness, Angle, Range and Transducer Type
,”
Proceedings of the 1998 IEEE Ultrasonics Symposium. Proceedings
(Cat. No. 98CH36102), Vol.
2
, pp.
1839
1842
.
12.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2012
, “
Effect of Roughness on Imaging and Sizing Rough Crack-Like Defects Using Ultrasonic Arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
5
), pp.
939
948
.
13.
Pettit
,
J. R.
,
Walker
,
A. E.
, and
Lowe
,
M. J. S.
,
2015
, “
Improved Detection of Rough Defects for Ultrasonic Nondestructive Evaluation Inspections Based on Finite Element Modeling of Elastic Wave Scattering
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
10
), pp.
1797
1808
.
14.
Kaltenbacher
,
M.
,
2011
, “
Computational Acoustics in Multi-Field Problems
,”
J. Comput. Acoust.
,
19
(
01
), pp.
27
62
.
15.
Wang
,
Z.
,
Cui
,
X.
,
Ma
,
H.
,
Kang
,
Y.
, and
Deng
,
Z.
,
2018
, “
Effect of Surface Roughness on Ultrasonic Testing of Back-Surface Micro-Cracks
,”
Appl. Sci.-Basel
,
8
(
8
), p.
1233
.
16.
Wang
,
Z.
,
Zeng
,
Z.
,
Song
,
Y.
, and
Li
,
X.
,
2022
, “
Finite Element Simulation of Ultrasonic Scattering by Rough Flaws With Multi-Scale Distortions
,”
Materials (Basel)
,
15
(
23
), p.
8633
.
17.
Zarnekow
,
M.
,
Ihlenburg
,
F.
, and
Grätsch
,
T.
,
2020
, “
An Efficient Approach to the Simulation of Acoustic Radiation From Large Structures With FEM
,”
J. Theor. Comput. Acoust.
,
28
(
04
), p.
1950019
.
18.
Jarvis
,
A. J. C.
, and
Cegla
,
F. B.
,
2012
, “
Application of the Distributed Point Source Method to Rough Surface Scattering and Ultrasonic Wall Thickness Measurement
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1325
1335
.
19.
Zhang
,
S. Z.
,
Huang
,
Y. T.
,
Li
,
X. B.
, and
Jeong
,
H.
,
2021
, “
Modeling of Wave Fields Generated by Ultrasonic Transducers Using a Quasi-Monte Carlo Method
,”
J. Acoust. Soc. Am.
,
149
(
1
), pp.
7
15
.
20.
Xie
,
L.
,
Zhang
,
S.
,
Wang
,
L.
,
Cheng
,
C.
, and
Li
,
X.
,
2023
, “
Modeling Ultrasonic Wave Fields Scattered by Flaws Using a Quasi-Monte Carlo Method: Theoretical Method and Experimental Verification
,”
Ultrasonics
,
132
, p.
107002
.
21.
Zhang
,
S.
,
Cheng
,
C.
,
Li
,
X.
, and
Kundu
,
T.
,
2022
, “
Fast Fourier Transform Method for Determining Velocities of Ultrasonic Rayleigh Waves Using a Comb Transducer
,”
Ultrasonics
,
124
, p.
106754
.
22.
Faure
,
H.
,
2001
, “
Monte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration
,”
Proceedings of the Combinatorial & Computational Mathematics (Pohang, 2000)
, pp.
1
12
.
23.
Sobol
,
I. M.
,
1998
, “
On Quasi-Monte Carlo Integrations
,”
Math. Comput. Simul.
,
47
(
2
), pp.
103
112
.
24.
Shi
,
F.
,
Lowe
,
M. J. S.
,
Xi
,
X.
, and
Craster
,
R. V.
,
2016
, “
Diffuse Scattered Field of Elastic Waves From Randomly Rough Surfaces Using an Analytical Kirchhoff Theory
,”
J. Mech. Phys. Solids
,
92
, pp.
260
277
.
25.
Pao
,
Y. H.
, and
Varatharajulu
,
V. V.
,
1976
, “
Huygens' Principle, Radiation Conditions, and Integral Formulas for the Scattering of Elastic Waves
,”
J. Acoust. Soc. Am.
,
59
(
6
), pp.
1361
1370
.
26.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2011
, “
Longitudinal Wave Scattering From Rough Crack-Like Defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
10
), pp.
2171
2180
.
27.
Shi
,
F.
,
Lowe
,
M.
, and
Craster
,
R.
,
2017
, “
Diffusely Scattered and Transmitted Elastic Waves by Random Rough Solid-Solid Interfaces Using an Elastodynamic Kirchhoff Approximation
,”
Phys. Rev. B
,
95
(
21
), p.
214305
.
28.
Zhang
,
G.
,
Li
,
X.
,
Zhang
,
S.
, and
Kundu
,
T.
,
2021
, “
Investigation of Frequency-Dependent Attenuation Coefficients for Multiple Solids Using a Reliable Pulse-Echo Ultrasonic Measurement Technique
,”
Measurement
,
177
, p.
109270
.
29.
Hellekalek
,
P.
,
Kritzer
,
P.
, and
Pillichshammer
,
F.
,
2016
, “
Open Type Quasi-Monte Carlo Integration Based on Halton Sequences in Weighted Sobolev Spaces
,”
J. Complexity
,
33
, pp.
169
189
.
30.
Shi
,
F.
,
Choi
,
W.
,
Lowe
,
M. J. S.
,
Skelton
,
E. A.
, and
Craster
,
R. V.
,
2015
, “
The Validity of Kirchhoff Theory for Scattering of Elastic Waves From Rough Surfaces
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
471
(
2178
), p.
20140977
.
You do not currently have access to this content.