Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Methods to quantification of precursor damage in carbon fiber reinforced polymer (CFRP) composite structures are reported herein. These techniques include coda wave interferometry (CWI) and nonlinear ultrasonics (NLU). Since low-frequency Lamb wave propagation is insensitive to the early-stage material degradation, it is shown that decoding the information in coda wave can overcome this well-known limitation. To conclude this possibility, CWI technique is cross verified with a traditional high-frequency ultrasound method. To achieve this goal, a tensile–tensile fatigue experiment was designed for CFRP composite specimens. By inducing controlled fatigue damage in these structures, material states are assessed using low-frequency (<500 kHz) ultrasonic guided wave and high-frequency (>10 MHz) P-wave. Stretching guided coda wave is utilized to quantify the precursor damage as a unique approach in this article. However, such method could be illuded by the changes in the signals due to bonds and contacts. To verify if the CWI is successful, and to evaluate the precursor damage in composite structures, additional nonlinear analysis of ultrasonic signals from both guided waves and P-waves is performed. Higher order nonlinearities in both low-frequency guided wave and high-frequency P-wave propagation demonstrate the growth of precursor damage in CFRP composite structures. So does the CWI of low-frequency guided wave data. Accuracy of these ultrasonic techniques is validated with experimentally obtained remaining strengths of the fatigue specimens. With this verification it is envisioned that both CWI and NLU together could quantify the precursor damage in composite structures.

References

1.
Singh
,
P.
,
Raghavender
,
V.
,
Joshi
,
S.
,
Vasant
,
N. P.
,
Awasthi
,
A.
,
Nagpal
,
A.
, and
Jasim Abd al-saheb
,
A.
,
2023
, “
Composite Material: A Review Over Current Development and Automotive Application
,”
Mater. Today: Proc.
2.
Maiti
,
S.
,
Islam
,
M. R.
,
Uddin
,
M. A.
,
Afroj
,
S.
,
Eichhorn
,
S. J.
, and
Karim
,
N.
,
2022
, “
Sustainable Fiber-Reinforced Composites: A Review
,”
Adv. Sustain. Syst.
,
6
(
11
), p.
2200258
.
3.
Siengchin
,
S.
,
2024
, “
A Review on Lightweight Materials for Defence Applications: A Present and Future Developments
,”
Def. Technol.
4.
Habtour
,
E.
,
Cole
,
D. P.
,
Riddick
,
J. C.
,
Weiss
,
V.
,
Robeson
,
M.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Detection of Fatigue Damage Precursor Using a Nonlinear Vibration Approach
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1442
1463
.
5.
Reifsnider
,
K. L.
, and
Case
,
S. W.
,
2002
,
Damage Tolerance and Durability of Material Systems
, 1st ed.,
Wiley-Interscience
,
Hoboken, NJ
.
6.
Talreja
,
R.
, and
Varna
,
J.
,
2015
,
Modeling Damage, Fatigue and Failure of Composite Materials
,
Elsevier
,
New York
.
7.
Talreja
,
R.
, and
Singh
,
C. V.
,
2012
,
Damage and Failure of Composite Materials
,
Cambridge University Press
,
New York
.
8.
Tenney
,
D. R.
,
Davis
,
J. G.
,
Pipes
,
R. B.
, and
Johnston
,
N.
, “NASA Composite Materials Development: Lessons Learned and Future Challenges.”
9.
Contreras Lopez
,
J.
,
Chiachío
,
J.
,
Saleh
,
A.
,
Chiachío
,
M.
, and
Kolios
,
A.
,
2022
, “
A Cross-sectoral Review of the Current and Potential Maintenance Strategies for Composite Structures
,”
SN Appl. Sci.
,
4
(
6
), p.
180
.
10.
Veers
,
P.
,
Bottasso
,
C.
,
Manuel
,
L.
,
Naughton
,
J.
,
Pao
,
L.
,
Paquette
,
J.
,
Robertson
,
A.
, et al
,
2023
, “
Grand Challenges in the Design, Manufacture, and Operation of Future Wind Turbine Systems
,”
Wind Energy Sci.
,
8
, pp.
1071
1131
.
11.
Nsengiyumva
,
W.
,
Zhong
,
S.
,
Lin
,
J.
,
Zhang
,
Q.
,
Zhong
,
J.
, and
Huang
,
Y.
,
2021
, “
Advances, Limitations and Prospects of Nondestructive Testing and Evaluation of Thick Composites and Sandwich Structures: A State-of-the-Art Review
,”
Compos. Struct.
,
256
, p.
112951
.
12.
Wang
,
B.
,
Zhong
,
S.
,
Lee
,
T. L.
,
Fancey
,
K. S.
, and
Mi
,
J.
,
2020
, “
Non-destructive Testing and Evaluation of Composite Materials/Structures: A State-of-the-Art Review
,”
Adv. Mech. Eng.
,
12
(
4
), p.
1687814020913761
.
13.
Mulaveesala
,
R.
,
Siddiqui
,
J. A.
,
Arora
,
V.
,
Ghali
,
S. V.
,
Muniyappa
,
A.
, and
Takei
,
M.
, “
Nondestructive Testing and Evaluation of Composites by Non-invasive IR Imaging Techniques
,”
Thermosense: Thermal Infrared Applications XXXV, Vol. 8705
,
Baltimore, MD
, pp.
271
277
,
SPIE
.
14.
Moustakidis
,
S.
,
Anagnostis
,
A.
,
Karlsson
,
P.
, and
Hrissagis
,
K.
,
2016
, “
Non-destructive Inspection of Aircraft Composite Materials Using Triple IR Imaging
,”
IFAC-PapersOnLine
,
49
(
28
), pp.
291
296
.
15.
Song
,
P.
,
Liu
,
J.
,
Li
,
Z.
,
Wu
,
S.
,
Sun
,
X.
,
Yue
,
H.
, and
Pawlak
,
M.
,
2022
, “
All-Optical Laser Ultrasonic Technique for Imaging of Subsurface Defects in Carbon Fiber Reinforced Polymer (CFRP) Using an Optical Microphone
,”
J. Appl. Phys.
,
131
(
16
), p.
165106
.
16.
La Malfa Ribolla
,
E.
,
Rezaee Hajidehi
,
M.
,
Rizzo
,
P.
,
Fileccia Scimemi
,
G.
,
Spada
,
A.
, and
Giambanco
,
G.
,
2018
, “
Ultrasonic Inspection for the Detection of Debonding in CFRP-Reinforced Concrete
,”
Struct. Infrastruct. Eng.
,
14
(
6
), pp.
807
816
.
17.
Banerjee
,
S.
,
2009
, “
Estimation of Intrinsic Damage State in Materials Using Non-local Perturbation: Application to Active Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
20
(
10
), pp.
1221
1232
.
18.
Bell
,
J.
,
2008
,
Condition Based Maintenance Plus DoD Guidebook
,
Department of Defense
,
Washington, DC
.
19.
Hall
,
A. J.
,
Brennan
,
I.
,
Raymond
,
E.
,
Ghoshal
,
A.
,
Liu
,
K. C.
,
Coatney
,
M.
,
Haynes
,
R.
,
Bradley
,
N.
,
Weiss
,
V.
, and
Tzeng
,
J.
,
2013
,
Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads
,
US Army Research Laboratory
,
Aberdeen, MD
.
20.
Jurek
,
M.
,
Radzienski
,
M.
,
Kudela
,
P.
, and
Ostachowicz
,
W.
,
2018
, “
Non-contact Excitation and Focusing of Guided Waves in CFRP Composite Plate by Air-Coupled Transducers for Application in Damage Detection
,”
Procedia Struct. Integrity
,
13
, pp.
2089
2094
.
21.
Mei
,
H.
,
James
,
R.
,
Haider
,
M. F.
, and
Giurgiutiu
,
V.
,
2020
, “
Multimode Guided Wave Detection for Various Composite Damage Types
,”
Appl. Sci.
,
10
(
2
), p.
484
.
22.
Thalapil
,
J.
,
Sawant
,
S.
,
Tallur
,
S.
, and
Banerjee
,
S.
,
2022
, “
Guided Wave Based Localization and Severity Assessment of In-Plane and Out-of-Plane Fiber Waviness in Carbon Fiber Reinforced Composites
,”
Compos. Struct.
,
297
, p.
115932
.
23.
Lim
,
H. J.
,
Lee
,
H.
,
Skinner
,
T.
,
Chattopadhyay
,
A.
, and
Hall
,
A.
,
2021
, “
Fatigue Damage Detection and Growth Monitoring for Composite Structure Using Coda Wave Interferometry
,”
Struct. Control Health Monit.
,
28
(
3
), p.
e2689
.
24.
Patra
,
S.
, and
Banerjee
,
S.
,
2017
, “
Material State Awareness for Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI)
,”
Materials
,
10
(
12
), p.
1436
.
25.
Meng
,
Y.
,
Lin
,
L.
,
Wang
,
Y.
,
Liu
,
H.
, and
Luo
,
Z.
,
2023
, “
Fatigue Damage Assessment Using Nonlinear Critically Refracted Longitudinal (LCR) Wave in Pure Iron: Experiments and FEM
,”
Int. J. Fatigue
,
176
, p.
107886
.
26.
Martini
,
F.
,
Bean
,
C. J.
,
Saccorotti
,
G.
,
Viveiros
,
F.
, and
Wallenstein
,
N.
,
2009
, “
Seasonal Cycles of Seismic Velocity Variations Detected Using Coda Wave Interferometry at Fogo Volcano, São Miguel, Azores, During 2003–2004
,”
J. Volcanol. Geotherm. Res.
,
181
(
3–4
), pp.
231
246
.
27.
Snieder
,
R.
,
Grêt
,
A.
,
Douma
,
H.
, and
Scales
,
J.
,
2002
, “
Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity
,”
Science
,
295
(
5563
), pp.
2253
2255
.
28.
Planès
,
T.
, and
Larose
,
E.
,
2013
, “
A Review of Ultrasonic Coda Wave Interferometry in Concrete
,”
Cem. Concr. Res.
,
53
, pp.
248
255
.
29.
Zhang
,
Y.
,
Abraham
,
O.
,
Grondin
,
F.
,
Loukili
,
A.
,
Tournat
,
V.
,
Le Duff
,
A.
,
Lascoup
,
B.
, and
Durand
,
O.
,
2012
, “
Study of Stress-Induced Velocity Variation in Concrete Under Direct Tensile Force and Monitoring of the Damage Level by Using Thermally-Compensated Coda Wave Interferometry
,”
Ultrasonics
,
52
(
8
), pp.
1038
1045
.
30.
Schurr
,
D. P.
,
Kim
,
J. Y.
,
Sabra
,
K. G.
, and
Jacobs
,
L. J.
,
2011
, “
Damage Detection in Concrete Using Coda Wave Interferometry
,”
NDT E Int.
,
44
(
8
), pp.
728
735
.
31.
Zhang
,
Y.
,
Planès
,
T.
,
Larose
,
E.
,
Obermann
,
A.
,
Rospars
,
C.
, and
Moreau
,
G.
,
2016
, “
Diffuse Ultrasound Monitoring of Stress and Damage Development on a 15-ton Concrete Beam
,”
J. Acoust. Soc. Am.
,
139
(
4
), pp.
1691
1701
.
32.
Snieder
,
R.
,
2006
, “
The Theory of Coda Wave Interferometry
,”
Pure Appl. Geophys.
,
163
(
2–3
), pp.
455
473
.
33.
Larose
,
E.
, and
Hall
,
S.
,
2009
, “
Monitoring Stress Related Velocity Variation in Concrete With a 2 × 10−5 Relative Resolution Using Diffuse Ultrasound
,”
J. Acoust. Soc. Am.
,
125
(
4
), pp.
1853
1856
.
34.
Witos
,
M.
, and
Zokowski
,
M.
,
2014
, “
Passive Magnetic Observer in NDE & SHM Application
,”
EWSHM—7th European Workshop on Structural Health Monitoring
,
Nantes, France
,
July 8–11
, pp.
213
221
.
35.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2014
, “
Predictive Modeling of Nonlinear Wave Propagation for Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,”
J. Intell. Mater. Syst. Struct.
,
25
(
4
), pp.
506
520
.
36.
Gebrekidan
,
S. B.
,
Kang
,
T.
,
Kim
,
H. J.
, and
Song
,
S. J.
,
2018
, “
Nonlinear Ultrasonic Characterization of Early Degradation of Fatigued Al6061-T6 With Harmonic Generation Technique
,”
Ultrasonics
,
85
, pp.
23
30
.
37.
Li
,
W.
,
Cho
,
Y.
, and
Achenbach
,
J. D.
,
2012
, “
Detection of Thermal Fatigue in Composites by Second Harmonic Lamb Waves
,”
Smart Mater. Struct.
,
21
(
8
), p.
085019
.
38.
Gresil
,
M.
, and
Giurgiutiu
,
V.
,
2015
, “
Prediction of Attenuated Guided Waves Propagation in Carbon Fiber Composites Using Rayleigh Damping Model
,”
J. Intell. Mater. Syst. Struct.
,
26
(
16
), pp.
2151
2169
.
39.
Patra
,
S.
, and
Banerjee
,
S.
,
2017
, “
Material State Awareness for Composites Part II: Precursor Damage Analysis and Quantification of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (QUIC)
,”
Materials
,
10
(
12
), p.
1444
.
40.
Patra
,
S.
,
Ahmed
,
H.
,
Saadatzi
,
M.
, and
Banerjee
,
S.
,
2019
, “
Evidence of Dissipative and Growing Nonlinearity in Lamb Waves Due to Stress-Relaxation and Material Degradation in Composites
,”
Ultrasonics
,
96
, pp.
224
231
.
41.
Martins
,
S.
,
2019
, “Piezo Material Properties.” https://www.steminc.com/PZT/en/piezo-materials-properties, June 25, 2019.
42.
Saadatzi
,
M. S.
,
Ahmed
,
H.
,
Indaleeb
,
M. M.
, and
Banerjee
,
S.
,
2019
, “
RUSH: Realtime Ultrasonic Scanning Using Submergible Hydraulic Robotic Arms for Mechanical Properties Testing
,”
Smart Structures and NDE for Energy Systems and Industry 4.0
, Proc. SPIE 10973, p. 109730X.
43.
Patra
,
S.
,
2018
,
Ultrasonic Analysis and Tools for Quantitative Material State Awarness of Engineered Materials
,
University of South Carolina
,
Columbia, SC
.
44.
Patra
,
S.
,
Ahmed
,
H.
,
Saadatzi
,
M.
, and
Banerjee
,
S.
,
2020
, “
Effect of Time-Dependent Strength Recovery of Composite Materials: Quantification Through Higher Order Ultrasonic Non-Llinearity Using Lamb Waves
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
3
(
1
), p.
011005
.
45.
Thiele
,
S.
,
Matlack
,
K. H.
,
Kim
,
J. Y.
,
Qu
,
J.
,
Wall
,
J. J.
, and
Jacobs
,
L. J.
,
2014
, “
Assessment of Precipitation in Alloy Steel Using Nonlinear Rayleigh Surface Waves
,”
AIP Conf. Proc.
,
1581
(
1
), pp.
682
689
.
46.
Zhang
,
J.
, and
Xuan
,
F.-Z.
,
2014
, “
Fatigue Damage Evaluation of Austenitic Stainless Steel Using Nonlinear Ultrasonic Waves in Low Cycle Regime
,”
J. Appl. Phys.
,
115
(
20)
, p.
204906
.
47.
Gandhi
,
N.
,
2010
,
Determination of Dispersion Curves for Acoustoelastic Lamb Wave Propagation
,
Georgia Institute of Technology
,
Atlanta, GA
.
48.
Gandhi
,
N.
,
Michaels
,
J. E.
, and
Lee
,
S. J.
,
2011
, “
Acoustoelastic Lamb Wave Propagation in a Homogeneous, Isotropic Aluminum Plate
,”
AIP Conf. Proc.
,
1335
(
1
), pp.
161
168
.
You do not currently have access to this content.