Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Simulation has been recognized as a promising option to reduce the time and costs associated with determining probability of detection curves to demonstrate the performance of guided wave-based structural health monitoring (GW-SHM) systems. Time-domain transient spectral finite element schemes have been used for large GW-SHM simulation campaigns, but the most common piezoelectric transducer model used for actuation, the pin force model, has limitations in terms of its range of validity. This is because the excitation frequency for the pin force model has only been validated far below the first electromechanical resonance frequency of the piezoelectric transducer mainly due to not considering the normal stress and dynamics of the transducer. As a result, the value of simulation tools for performance demonstrations may be limited. To address this limitation, this paper introduces a hybrid actuator model that integrates frequency-dependent complex interfacial stresses in both the shear and normal directions, computed using finite elements. These surface stresses are compatible with time-domain transient spectral finite element schemes, enabling their seamless integration without compromising the required performance for conducting intensive simulation campaigns. The proposed hybrid actuator model undergoes validation through a combination of simulation and experimental studies. Additionally, a comprehensive parametric study is conducted to assess the model’s validity across a wide range of excitation frequencies. The results demonstrate the accurate representation of the transduction signal above the piezoelectric transducer’s first free electromechanical resonance frequency.

References

1.
Rose
,
J. L.
,
2014
,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
, pp.
1
512
.
2.
Cawley
,
P.
,
2018
, “
Structural Health Monitoring: Closing the Gap Between Research and Industrial Deployment
,”
Struct. Health Monit.
,
17
(
5
), pp.
1225
1244
.
3.
Gopalakrishnan
,
S.
,
2016
,
Wave Propagation in Materials and Structures
,
CRC Press
,
Boca Raton, FL
.
4.
Raghavan
,
A.
,
2007
, “Guided-Wave Structural Health Monitoring,” Ph.D. thesis, University of Michigan.
5.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
6.
Druet
,
T.
,
Tastet
,
J.-L.
,
Chapuis
,
B.
, and
Moulin
,
E.
,
2019-06
, “
Autocalibration Method for Guided Wave Tomography With Undersampled Data
,”
Wave Motion
,
89
, pp.
265
283
.
7.
Miorelli
,
R.
,
Kulakovskyi
,
A.
,
Chapuis
,
B.
,
D’Almeida
,
O.
, and
Mesnil
,
O.
,
2021
, “
Supervised Learning Strategy for Classification and Regression Tasks Applied to Aeronautical Structural Health Monitoring Problems
,”
Ultrasonics
,
113
, p.
106372
.
8.
Royer
,
D.
, and
Dieulesaint
,
E.
,
1999
,
Elastic Waves in Solids I: Free and Guided Propagation
,
Springer Science & Business Media
.
9.
Annis
,
C.
,
2009
, “MIL-HDBK-1823a, Nondestructive Evaluation System Reliability Assessment”. Standardization Order Desk, Philadelphia, PA.
10.
Chapuis
,
B.
,
Calmon
,
P.
, and
Jenson
,
F.
,
2016
, “Best Practices for the Use of Simulation in POD Curves Estimation.” IIW Collection.
11.
Moriot
,
J.
,
Quaegebeur
,
N.
,
Duff
,
A. L.
, and
Masson
,
P.
,
2017
, “
A Model-Based Approach for Statistical Assessment of Detection and Localization Performance of Guided Wave-Based Imaging Techniques
,”
Struct. Health Monit.
,
17
(
6
), pp.
1460
1472
.
12.
Lizé
,
E.
,
Rébillat
,
M.
,
Mechbal
,
N.
, and
Bolzmacher
,
C.
,
2018
, “
Optimal Dual-PZT Sizing and Network Design for Baseline-Free Shm of Complex Anisotropic Composite Structures
,”
Smart Mater. Struct.
,
27
(
11
), p.
115018
.
13.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Klaus-Jurgen Bathe
.
14.
Ostachowicz
,
W.
,
Kudela
,
P.
,
Krawczuk
,
M.
, and
Zak
,
A.
,
2011
,
Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method
,
John Wiley & Sons
.
15.
Kudela
,
P.
,
2015
, “
Parallel Implementation of Spectral Element Method for Lamb Wave Propagation Modeling
,”
Inter. J, Numer. Methods Eng.
,
106
(
6
), pp.
413
429
.
16.
Mesnil
,
O.
,
Recoquillay
,
A.
,
Druet
,
T.
,
Serey
,
V.
,
Hoang
,
H. T.
,
Imperiale
,
A.
, and
Demaldent
,
E.
,
2021
, “
Experimental Validation of Transient Spectral Finite Element Simulation Tools Dedicated to Guided Wave-Based Structural Health Monitoring
,”
ASME J. Nondest. Evaluat., Diagn. Progn. Eng. Syst.
,
4
(
4
), p.
041003
.
17.
Moll
,
J.
,
Kathol
,
J.
,
Fritzen
,
C.-P.
,
Moix-Bonet
,
M.
,
Rennoch
,
M.
,
Koerdt
,
M.
,
Herrmann
,
A. S.
,
Sause
,
M. G.
, and
Bach
,
M.
,
2018
, “
Open Guided Waves: Online Platform for Ultrasonic Guided Wave Measurements
,”
Struct. Health Monit.
,
18
(
5–6
), pp.
1903
1914
.
18.
Leckey
,
C. A.
,
Wheeler
,
K. R.
,
Hafiychuk
,
V. N.
,
Hafiychuk
,
H.
, and
Timuçin
,
D. A.
,
2018
, “
Simulation of Guided-Wave Ultrasound Propagation in Composite Laminates: Benchmark Comparisons of Numerical Codes and Experiment
,”
Ultrasonics
,
84
, pp.
187
200
.
19.
Imperiale
,
A.
, and
Demaldent
,
E.
,
2019
, “
A Macro-Element Strategy Based Upon Spectral Finite Elements and Mortar Elements for Transient Wave Propagation Modeling. Application to Ultrasonic Testing of Laminate Composite Materials
,”
Inter. J. Numer. Methods Eng.
,
119
(
10
), pp.
964
990
.
20.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Structz.
,
16
(
4
), pp.
291
305
.
21.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
3-D Elasticity-Based Modeling of Anisotropic Piezocomposite Transducers for Guided Wave Structural Health Monitoring
,”
ASME J. Vib. Acoust.
,
129
(
6
), pp.
739
751
.
22.
Crawley
,
E. F.
, and
De Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
.
23.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoceramic Actuation of Beams
,”
J. Intell. Mater. Syst. Struct.
,
1
(
1
), pp.
4
25
.
24.
Bhalla
,
S.
, and
Soh
,
C. K.
,
2004
, “
Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling
,”
J. Aeros. Eng.
,
17
(
4
), pp.
154
165
.
25.
Bhalla
,
S.
, and
Soh
,
C. K.
,
2004
, “
Structural Health Monitoring by Piezo–Impedance Transducers, II: Applications
,”
J. Aeros. Eng.
,
17
(
4
), pp.
166
175
.
26.
Bhalla
,
S.
, and
Soh
,
C. K.
,
2004
, “
Electromechanical Impedance Modeling for Adhesively Bonded Piezo-transducers
,”
J. Intell. Material Syst. Structures
,
15
(
12
), pp.
955
972
.
27.
Yu
,
L.
,
Bottai-Santoni
,
G.
, and
Giurgiutiu
,
V.
,
2010
, “
Shear Lag Solution for Tuning Ultrasonic Piezoelectric Wafer Active Sensors With Applications to Lamb Wave Array Imaging
,”
Inter. J. Eng. Sci.
,
48
(
10
), pp.
848
861
.
28.
Li
,
L.
,
Faisal Haider
,
M.
,
Mei
,
H.
,
Giurgiutiu
,
V.
, and
Xia
,
Y.
,
2019
, “
Theoretical Calculation of Circular-Crested Lamb Wave Field in Single- and Multi-Layer Isotropic Plates Using the Normal Mode Expansion Method
,”
Struct. Health Monit.
,
19
(
2
), pp.
357
372
.
29.
Glushkov
,
E.
,
Glushkova
,
N.
,
Kvasha
,
O.
, and
Seemann
,
W.
,
2007
, “
Integral Equation Based Modeling of the Interaction Between Piezoelectric Patch Actuators and an Elastic Substrate
,”
Smart Mater. Struct.
,
16
(
3
), pp.
650
664
.
30.
Sohn
,
H.
, and
Lee
,
S. J.
,
2009
, “
Lamb Wave Tuning Curve Calibration for Surface-Bonded Piezoelectric Transducers
,”
Smart Mater. Struct.
,
19
(
1
), p.
015007
.
31.
Park
,
G.
,
Farrar
,
C. R.
,
Lanza di Scalea
,
F.
, and
Coccia
,
S.
,
2006
, “
Performance Assessment and Validation of Piezoelectric Active-Sensors in Structural Health Monitoring
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1673
1683
.
32.
Kapuria
,
S.
,
Sharma
,
B. N.
, and
Arockiarajan
,
A.
,
2021
, “
Role of Transducer Inertia in Generation: Sensing, and Time-Reversal Process of Lamb Waves in Thin Plates With Surface-Bonded Piezoelectric Transducers
,”
J. Intel. Mater. Syst. Struct.
,
33
(
6
), p.
1045389X2110290
.
33.
Quaegebeur
,
N.
,
Ostiguy
,
P.-C.
, and
Masson
,
P.
,
2015
, “
Hybrid Empirical/Analytical Modeling of Guided Wave Generation by Circular Piezoceramics
,”
Smart Mater. Struct.
,
24
(
3
), p.
035003
.
34.
Li
,
J.
,
Khodaei
,
Z. S.
, and
Aliabadi
,
M. H.
,
2020
, “
Boundary Element Modelling of Ultrasonic Lamb Waves for Structural Health Monitoring
,”
Smart Mater. Struct.
,
29
(
6
), p.
105030
.
35.
Serey
,
V.
,
Quaegebeur
,
N.
,
Micheau
,
P.
,
Masson
,
P.
,
Castaings
,
M.
, and
Renier
,
M.
,
2018
, “
Selective Generation of Ultrasonic Guided Waves in a Bi-Dimensional Waveguide
,”
Struct. Health Monit.
,
18
(
4
), pp.
1324
1336
.
37.
Modif-PZT-4
,
2020
. Sm111, http://www.steminc.com/piezo/PZ_property.asp Accessed January 2020.
38.
Moll
,
J.
,
Golub
,
M. V.
,
Glushkov
,
E.
,
Glushkova
,
N.
, and
Fritzen
,
C.-P.
,
2012
, “
Non-Axisymmetric Lamb Wave Excitation by Piezoelectric Wafer Active Sensors
,”
Sens. Actuat. A
,
174
, pp.
173
180
.
You do not currently have access to this content.