Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ultrasonic measurements are commonly used for crack sizing in the industrial context, but due to potential partial crack closure, the crack depth can be underestimated. It could be of importance regarding the prediction of remaining service life and maintenance scheduling of industrial components. In the literature, nonlinear ultrasonic methods have proven efficient for this issue. Among them, a pump probe waves method is investigated here for possible use in an industrial context. In this article, an industrial steel component with several partially closed fatigue cracks is studied. First, a three-point bending test associated with digital image correlation is performed with ultrasonic measurements to obtain reliable indications about the crack’s closure state. A three-dimensional laser vibrometry experiment shows the possibility of opening the crack using a pump wave. The pump probe waves method is conducted using a standard 45 deg shear wave transducer in echo mode as a probe. The results allow to discuss physical mechanisms in play. It also shows the possibility to detect the closed nature of all of the cracks even if the full opening state is not reached. Moreover, a coherent crack profile is found compared to the mechanical test. The results are validated on a notched sample for which the nonlinear response is negligible. Industrial application as well as possible improvement are discussed.

References

1.
Biwa
,
S.
,
Suzuki
,
A.
, and
Ohno
,
N.
,
2005
, “
Evaluation of Interface Wave Velocity, Reflection Coefficients and Interfacial Stiffnesses of Contacting Surfaces
,”
Ultrasonics
,
43
(
6
), pp.
495
502
.
2.
Clark
,
R.
,
Dover
,
W. D.
, and
Bond
,
L. J.
,
1987
, “
The Effect of Crack Closure on the Reliability of NDT Predictions of Crack Size
,”
NDT Int.
,
20
(
5
), pp.
269
275
.
3.
Mihara
,
T.
,
Nomura
,
M.
, and
Yamanaka
,
K.
,
2002
, “
Relations Between Crack Opening Behavior and Crack Tip Diffraction of Longitudinal Wave
,”
Proc. SPIE-Int. Soc. Opt. Eng.
,
4703
, pp.
137
145
.
4.
Ohara
,
Y.
,
Takahashi
,
K.
,
Jinno
,
K.
, and
Yamanaka
,
K.
,
2014
, “
High-Selectivity Ultrasonic Imaging of Closed Cracks Using Global Preheating and Local Cooling
,”
Mater. Trans.
,
55
(
7
), pp.
1003
1010
.
5.
Tohmyoh
,
H.
,
Saka
,
M.
, and
Kondo
,
Y.
,
2006
, “
Thermal Opening Technique for Nondestructive Evaluation of Closed Cracks
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
103
108
.
6.
Prager
,
J.
,
Kitze
,
J.
,
Acheroy
,
C.
,
Brackrock
,
D.
,
Brekow
,
G.
, and
Kreutzbruck
,
M.
,
2013
, “
SAFT and TOFD—A Comparative Study of Two Defect Sizing Techniques on a Reactor Pressure Vessel Mock-Up
,”
J. Nondestr. Eval.
,
32
(
1
), pp.
1
13
.
7.
Carcreff
,
E.
, and
Braconnier
,
D.
,
2015
, “
Comparison of Conventional Technique and Migration Approach for Total Focusing
,”
Phys. Procedia
,
70
, pp.
566
569
.
8.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2005
, “
Post-Processing of the Full Matrix of Ultrasonic Transmit–Receive Array Data for Non-Destructive Evaluation
,”
NDT&E Int.
,
38
(
8
), pp.
701
711
.
9.
Jhang
,
K.-Y.
,
2009
, “
Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review
,”
Int. J. Precis. Eng. Manuf.
,
10
(
1
), pp.
123
135
.
10.
Ikeuchi
,
M.
,
Jinno
,
K.
,
Ohara
,
Y.
, and
Yamanaka
,
K.
,
2013
, “
Improvement of Closed Crack Selectivity in Nonlinear Ultrasonic Imaging Using Fundamental Wave Amplitude Difference
,”
Jpn. J. Appl. Phys.
,
52
(
7S
), p.
07HC08
.
11.
Ohara
,
Y.
,
Mihara
,
T.
,
Sasaki
,
R.
,
Ogata
,
T.
,
Yamamoto
,
S.
,
Kishimoto
,
Y.
, and
Yamanaka
,
K.
,
2007
, “
Imaging of Closed Cracks Using Nonlinear Response of Elastic Waves at Subharmonic Frequency
,”
Appl. Phys. Lett.
,
90
(
1
), pp.
011902
011902
.
12.
Seo
,
H.
,
Jhang
,
K.-Y.
,
Kim
,
K.-C.
, and
Hong
,
D.-P.
,
2014
, “
Improvement of Crack Sizing Performance by Using Nonlinear Ultrasonic Technique
,”
Int. J. Precis. Eng. Manuf.
,
15
(
11
), pp.
2461
2464
.
13.
Kou
,
X.
,
Pei
,
C.
, and
Chen
,
Z.
,
2021
, “
Fully Noncontact Inspection of Closed Surface Crack With Nonlinear Laser Ultrasonic Testing Method
,”
Ultrasonics
,
114
, p.
106426
.
14.
Ouchi
,
A.
,
Sugawara
,
A.
,
Ohara
,
Y.
, and
Yamanaka
,
K.
,
2015
, “
Subharmonic Phased Array for Crack Evaluation Using Surface Acoustic Wave
,”
Jpn. J. Appl. Phys.
,
54
(
7S1
), p.
07HC05
.
15.
Ohara
,
Y.
,
Nakajima
,
H.
,
Haupert
,
S.
,
Tsuji
,
T.
, and
Mihara
,
T.
,
2019
, “
Nonlinear Ultrasonic Phased Array With Fixed-Voltage Fundamental Wave Amplitude Difference for High-Selectivity Imaging of Closed Cracks
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
266
277
.
16.
Kim
,
J.-Y.
,
Yakovlev
,
V.
, and
Rokhlin
,
S.
,
2004
, “
Surface Acoustic Wave Modulation on a Partially Closed Fatigue Crack
,”
J. Acoust. Soc. Am.
,
115
(
5
), pp.
1961
1972
.
17.
Kim
,
J.-Y.
,
Yakovlev
,
V. A.
, and
Rokhlin
,
S. I.
,
2003
, “
Parametric Modulation Mechanism of Surface Acoustic Wave on a Partially Closed Crack
,”
Appl. Phys. Lett.
,
82
(
19
), pp.
3203
3205
.
18.
Payan
,
C.
,
Quiviger
,
A.
,
Garnier
,
V.
,
Chaix
,
J. F.
, and
Salin
,
J.
,
2013
, “
Applying Diffuse Ultrasound Under Dynamic Loading to Improve Closed Crack Characterization in Concrete
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
EL211
EL216
.
19.
Renaud
,
G.
,
Rivière
,
J.
,
Bas
,
P.-Y. L.
, and
Johnson
,
P. A.
,
2013
, “
Hysteretic Nonlinear Elasticity of Berea Sandstone at Low-Vibrational Strain Revealed by Dynamic Acousto-Elastic Testing
,”
Geophys. Res. Lett.
,
40
(
4
), pp.
715
719
.
20.
Jin
,
J.
,
Rivière
,
J.
,
Ohara
,
Y.
, and
Shokouhi
,
P.
,
2018
, “
Dynamic Acousto-Elastic Response of Single Fatigue Cracks With Different Microstructural Features: An Experimental Investigation
,”
J. Appl. Phys.
,
124
(
7
), p.
075303
.
21.
Haupert
,
S.
,
Renaud
,
G.
,
Rivière
,
J.
, and
Shokouhi
,
P.
,
2019
, “Dynamic Acousto-Elastic Testing,”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
, ed.,
Springer International Publishing
,
Cham
, pp.
509
546
.
22.
Becker
,
F. L.
,
Doctor
,
S. R.
,
Heasler
,
P. G.
,
Morris
,
C. J.
,
Pitman
,
S. G.
,
Selby
,
G. P.
, and
Simonen
,
F. A.
,
1981
, “
Integration of NDE Reliability and Fracture Mechanics
,” U.S. Department of Energy Office of Scientific and Technical Information, Vol.
1079779
.
23.
Klepka
,
A.
,
Staszewski
,
W.
,
Jenal
,
R.
,
Szwedo
,
M.
,
Iwaniec
,
J.
, and
Uhl
,
T.
,
2012
, “
Nonlinear Acoustics for Fatigue Crack Detection—Experimental Investigations of Vibro-Acoustic Wave Modulations
,”
Struct. Health. Monit.
,
11
(
2
), pp.
197
211
.
24.
Moussatov
,
A.
,
Gusev
,
V.
, and
Castagnède
,
B.
,
2003
, “
Self-Induced Hysteresis for Nonlinear Acoustic Waves in Cracked Material
,”
Phys. Rev. Lett.
,
90
(
12
), p.
124301
.
25.
Solodov
,
I. Y.
,
Krohn
,
N.
, and
Busse
,
G.
,
2002
, “
CAN: An Example of Nonclassical Acoustic Nonlinearity in Solids
,”
Ultrasonics
,
40
(
1
), pp.
621
625
.
26.
Nouira
,
D.
,
2020
, “
Non-Linear Interactions Between US Waves and Contact Interface
,” Ph.D. thesis. https://theses.hal.science/tel-03121135
27.
Gusev
,
V.
, and
Chigarev
,
N.
,
2010
, “
Nonlinear Frequency-Mixing Photoacoustic Imaging of a Crack: Theory
,”
J. Appl. Phys.
,
107
(
12
), p.
124905
.
28.
Biwa
,
S.
,
Nakajima
,
S.
, and
Ohno
,
N.
,
2004
, “
On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-Dependent Interface Stiffness
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
508
515
.
29.
Aleshin
,
V. V.
, and
Van Den Abeele
,
K.
,
2018
, “
Preisach Description for Solids With Frictional Cracks
,”
Int. J. Non Linear Mech.
,
104
, pp.
28
38
.
You do not currently have access to this content.