Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study presents experimental work to analyze spur gear pair with geometrical and operating parameters. The spur gear pair accommodates the correction in tooth addendum, gear backlash, and linear tip-relief profile modification with three levels. As per Taguchi L9 orthogonal array, nine test spur gear pairs are precisely manufactured to analyze the gear dynamics. Other basic gear design parameters and operating parameters were held at a constant level. Root-mean-square (RMS) acceleration in the vertical direction is used to quantify the dynamic response of test gear pairs. Experimental data are analyzed by using the Taguchi method to investigate the rank of influencing parameters and the optimum level of parameters to minimize vibration response. Gear backlash, compared to tooth addendum and linear tip-relief tooth profile modification, emerges as the most influential parameter. The optimal combination is addendum 3.3 mm, backlash 0.05–0.075 mm, and linear tip-relief tooth profile modification, yielding the lowest vibration generation. Finally, the confirmation test was performed by using a simulation study to validate the experimental results. The RMS acceleration value of the simulation study is 0.070 g, which is approximately the lowest of the experimental response values. Similarly, 20 experiments were conducted with different speed and load combinations to check the effect of operating conditions on gear dynamics. From these experimental studies, it is observed that the rank of influencing parameters and optimum level of geometrical are varied with respect to operating conditions. It may be concluded that operating speed and loading conditions play very important roles in the design of a quiet gear system. The optimized performance of spur gear pairs may vary across different operating conditions. It indicates that typically optimized spur gear pair operated at one particular combination of load and speed may not show good performance at other operating conditions. Therefore, this study suggests that the realistic range of operating conditions should be considered while selecting suitable levels of geometrical parameters.

References

1.
Mark
,
W. D.
,
1978
, “
Analysis of the Vibratory Excitation of Gear Systems: Basic Theory
,”
J. Acoust. Soc. Am.
,
63
(
5
), pp.
1409
1430
.
2.
Mark
,
W. D.
,
1979
, “
Analysis of the Vibratory Excitations of Gear Systems II: Tooth Error Representations, Approximations, and Applications
,”
J. Acoust. Soc. Am.
,
66
(
6
), pp.
1758
1787
.
3.
Özgüven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Mathematical Models Used in Gear Dynamics-A Review
,”
J. Sound Vib.
,
121
(
3
), pp.
383
411
.
4.
Velex
,
P.
, and
Maatar
,
M.
,
1996
, “
A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior
,”
J. Sound Vib.
,
191
(
5
), pp.
629
660
.
5.
Harris
,
S. L.
,
1958
, “
Dynamic Loads on the Teeth of Spur Gears
,”
Proc. Inst. Mech. Eng. London
,
172
(
1
), pp.
87
112
.
6.
Kasuba
,
R.
, and
Evans
,
J. W.
,
1981
, “
An Extended Model for Determining Dynamic Loads in Spur Gearing
,”
ASME J. Mech. Des.
,
102
(
2
), pp.
398
409
.
7.
Benton
,
M.
, and
Seireg
,
A.
,
1978
, “
Simulation of Resonances and Instability Conditions in Pinion-Gear Systems
,”
ASME J. Mech. Des.
,
100
(
1
), pp.
26
32
.
8.
Benton
,
M.
, and
Seireg
,
A.
,
1978
, “
Factors Influencing Instability and Resonances in Geared Systems
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
372
378
.
9.
Özgüven
,
H. N.
, and
Houser
,
D. R.
,
1988
, “
Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error
,”
J. Sound Vib.
,
125
(
1
), pp.
71
83
.
10.
Tavkoli
,
M. S.
, and
Houser
,
D. R.
,
1986
, “
Optimum Profile Modification for the Minimization of Static Transmission Errors of Spur Gears
,”
ASME J. Mech. Transm. Autom. Des.
,
108
(
1
), pp.
86
95
.
11.
Sundareson
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
,
1991
, “
A Procedure Using Manufacturing Variance to Design Gears With Minimum Transmission Error
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
318
324
.
12.
Lin
,
H. H.
,
Huston
,
R. L.
, and
Coy
,
J. J.
,
1988
, “
On Dynamic Loads in Parallel Shaft Transmission: Part I – Modelling and Analysis
,”
ASME J. Mech. Transm. Autom. Des.
,
110
(
2
), pp.
221
225
.
13.
Lin
,
H. H.
,
Huston
,
R. L.
, and
Coy
,
J. J.
,
1988
, “
On Dynamic Loads in Parallel Shaft Transmission: Part II – Parameter Study
,”
ASME J. Mech. Transm. Autom. Des.
,
110
(
2
), pp.
226
229
.
14.
Lin
,
H. H.
,
Townsend
,
D. P.
, and
Oswald
,
F. B.
,
1994
, “
Dynamic Loading of Spur Gears With Linear or Parabolic Tooth Profile Modifications
,”
Mech. Mach. Theory
,
29
(
8
), pp.
1115
1129
.
15.
Lin
,
H. H.
,
Townsend
,
D. P.
, and
Oswald
,
F. B.
,
1988
, “Profile Modification to Minimize Spur Gear Dynamic Loading,” Paper No. NASA TM−89901, pp.
1
21
.
16.
Lin
,
H. H.
, and
Houston
,
R. L.
,
1986
, “Dynamic Loading on Parallel Shaft Gears,” Paper No. NASA CR 179473, pp.
1
74
.
17.
Lee
,
C.
,
Lin
,
H. H.
,
Oswald
,
F. B.
, and
Townsend
,
D. P.
,
1991
, “
Influence of Linear Profile Modification and Loading Conditions on the Dynamic Tooth Load and Stress of High-Contact-Ratio Spur Gears
,”
ASME J. Mech. Des.
,
113
(
4
), pp.
473
480
.
18.
Cai
,
Y.
, and
Hayashi
,
T.
,
1994
, “
The Linear Approximated Equation of Vibration of a Pair of Spur Gears (Theory and Experiment)
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
558
564
.
19.
Yoon
,
K. Y.
, and
Rao
,
S. S.
,
1996
, “
Dynamic Load Analysis of Spur Gears Using a New Tooth Profile
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
1
6
.
20.
Liou
,
C. H.
,
Lin
,
H. H.
,
Oswald
,
F. B.
,
Townsend
,
T.
, and
P
,
D.
,
1996
, “
Effect of Contact Ratio on Spur Gear Dynamic Load With No Tooth Profile Modification
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
439
443
.
21.
Kaharaman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.
22.
Kaharaman
,
A.
, and
Blankenship
,
G. W.
,
1999
, “
Effect of Involute Contact Ratio on Spur Gear Dynamics
,”
ASME J. Mech. Des.
,
121
, pp.
112
118
.
23.
Kaharaman
,
A.
, and
Blankenship
,
G. W.
,
1999
, “
Effect of Involute Tip Relief on Dynamic Response of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
313
315
.
24.
Wang
,
C. C.
,
1978
, “
Rotational Vibration With Backlash: Part 1
,”
ASME J. Mech. Des.
,
100
(
2
), pp.
363
373
.
25.
Wang
,
C. C.
,
1978
, “
Rotational Vibration With Backlash: Part 2
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
387
397
.
26.
Singh
,
R.
,
Xie
,
H.
, and
Comparin
,
R. J.
,
1989
, “
Analysis of Automotive Neutral Gear Rattle
,”
J. Sound Vib.
,
131
(
2
), pp.
177
196
.
27.
Comparin
,
R. J.
, and
Singh
,
R.
,
1989
, “
Non-Linear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vib.
,
134
(
2
), pp.
259
290
.
28.
Kaharaman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
259
290
.
29.
Wang
,
J.
,
Li
,
R.
, and
Peng
,
X.
,
2003
, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
ASME J. Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.
30.
Bonari
,
G.
, and
Pellicano
,
F.
,
2007
, “
Non-Smooth Dynamics of Spur Gears With Manufacturing Errors
,”
J. Sound Vib.
,
306
(
1–2
), pp.
271
283
.
31.
Ratanasumawong
,
C.
,
Matsumura
,
S.
,
Tatsuno
,
T.
, and
Houjoh
,
H.
,
2009
, “
Estimating Gear Tooth Surface Geometry by Means of the Vibration Measurement: Destination of the Vibration Characteristics of Gears With Tooth Surface Form Error
,”
ASME J. Mech. Des.
,
131
(
10
), pp.
1
9
.
32.
Moradi
,
H.
, and
Salarieh
,
H.
,
2012
, “
Analysis of Nonlinear Oscillations in Spur Gear Pair With Approximated Modelling of Backlash Nonlinearity
,”
Mech. Mach. Theory
,
51
(
1
), pp.
14
31
.
33.
Ghosh
,
S. S.
, and
Chakraborty
,
G.
,
2016
, “
On Optimal Tooth Profile Modification for Reduction of Vibration and Noise in Spur Gear Pairs
,”
Mech. Mach. Theory
,
105
(
1
), pp.
145
163
.
34.
Lin
,
T.
, and
He
,
Z.
,
2017
, “
Analytical Method for Coupled Transmission Error of Helical Gear System With Machining Errors, Assembly Errors and Tooth Modifications
,”
Mech. Syst. Signal Process.
,
91
(
1
), pp.
167
182
.
35.
Liu
,
P.
,
Zhu
,
L.
,
Gou
,
X.
,
Shi
,
J.
, and
Jin
,
G.
,
2021
, “
Dynamics Modeling and Analyzing of Spur Gear Pair With Pitch Deviation Considering Time-Varying Contact Ratio Under Multi-State Meshing
,”
J. Sound Vib.
,
513
(
1
), p.
116411
.
36.
Gao
,
P.
,
Liu
,
H.
,
Yan
,
P.
,
Xie
,
Y.
,
Xiang
,
C.
, and
Wang
,
C.
,
2022
, “
Research on Application of Dynamic Optimization Modification for an Involute Spur Gear in a Fixed-Shaft Gear Transmission System
,”
Mech. Syst. Signal Process
,
181
(
1
), pp.
1
21
.
37.
Raut
,
A. S.
,
Khot
,
S. M.
, and
Salunkhe
,
V. G.
,
2023
, “
Optimization of Geometrical Features of Spur Gear Pair Teeth for Minimization of Vibration Generation
,”
J. Vib. Eng. Technol.
,
12
(
1
), pp.
533
545
.
38.
Ross
,
P. J.
,
1996
,
Taguchi Techniques for Quality Engineering
, 2nd ed.,
McGraw-Hill
,
New-York
.
39.
Roy
,
R.
,
1990
,
A Primer on the Taguchi Method
,
Van Nostrand Reinhold, International Company Limited
,
London, England
.
40.
Lin
,
L.
, and
Parker
,
R. G.
,
2002
, “
Mesh Stiffness Variation in Two-Stage Gear Systems
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
68
76
.
41.
Li
,
S.
,
2007
, “
Effect of Machining Errors, Assembly Errors and Tooth Modifications on Loading Capacity, Load-Sharing Ratio and Transmission Error of a Pair of Spur Gears
,”
Mech. Mach. Theory
,
42
(
6
), pp.
698
726
.
42.
Maliha
,
R.
,
Dogruer
,
C. U.
, and
Ozguven
,
H. N.
,
2004
, “
Nonlinear Dynamic Modeling of Gear-Shaft-Bearing Systems Using Finite Elements and Describing Functions
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
534
541
.
43.
Bruyere
,
J.
, and
Velex
,
P.
,
2013
, “
Derivation of Optimum Profile Modifications in Narrow-Faced Spur and Helical Gears Using a Perturbation Method
,”
ASME J. Mech. Des.
,
135
(
7
), pp.
534
541
.
44.
Wang
,
G.
,
Lin
,
C.
, and
Zou
,
S.
,
2017
, “
Research on the Dynamic Transmission Error of a Spur Gear Pair With Eccentricities by Finite Element Method
,”
Mech. Mach. Theory
,
109
(
1
), pp.
1
13
.
45.
Li
,
H.
,
Chen
,
S.
,
Sun
,
Z.
, and
Hu
,
Y.
,
2022
, “
Nonlinear Dynamic Modeling Analysis of Spur Gear Based on Gear Compatibility Conditions
,”
Mech. Mach. Theory
,
171
(
1
), pp.
1
17
.
You do not currently have access to this content.