Abstract

Peri-ultrasound modeling which is based on nonlocal peridynamics is found and proven to be effective for modeling nonlinear waves propagating and interacting with damages in structures. This work presents the peri-ultrasound modeling to investigate the performance of three commonly used nonlinear ultrasonic (NLU) techniques—wave mixing, higher harmonic generation (HHG), and sideband peak count-index (or SPC-I) for monitoring damages (or cracks) in three-dimensional (3D) plate structures. Cracks can be defined as “thin cracks” and “thick cracks” according to the horizon size mentioned in peridynamics. Peri-ultrasound modeling results reveal that the SPC-I results are consistent with other reported numerical modeling and experimental results available in the literature. However, the modulation indicator (MI) from the wave mixing model only shows consistent trends for thin cracks but not for thick cracks and its reliability is affected by the initial excitation bandwidth. The relative acoustic nonlinearity factor β from the HHG technique shows consistent trends for thick cracks but not for thin cracks. It can be concluded from the obtained parametric analysis results that the SPC-I technique is more robust and reliable for monitoring damages in engineering structures.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
G.
,
Li
,
X.
,
Zhang
,
S.
, and
Kundu
,
T.
,
2021
, “
Investigation of Frequency-Dependent Attenuation Coefficients for Multiple Solids Using a Reliable Pulse-Echo Ultrasonic Measurement Technique
,”
Measurement
,
177
, pp.
109270
.
2.
Zhang
,
G.
,
Liu
,
X.
,
Li
,
X.
,
Song
,
Y.
, and
Zhang
,
S.
,
2019
, “
Measurement of Shear Wave Attenuation Coefficient Using a Contact Pulse-Echo Method With Consideration of Partial Reflection Effects
,”
Meas. Sci. Technol.
,
30
(
11
), pp.
115601
.
3.
Park
,
S.
,
Alnuaimi
,
H.
,
Hayes
,
A.
,
Sitkiewicz
,
M.
,
Amjad
,
U.
,
Muralidharan
,
K.
, and
Kundu
,
T.
,
2022
, “
Nonlinear Acoustic Technique for Monitoring Porosity in Additively Manufactured Parts
,”
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
5
(
2
), pp.
021008
.
4.
Zhang
,
G.
,
Li
,
X.
, and
Kundu
,
T.
,
2023
, “
Ordinary State-Based Peri-Ultrasound Modeling to Study the Effects of Multiple Cracks on the Nonlinear Response of Plate Structures
,”
Ultrasonics
,
133
, p.
107028
.
5.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
6.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elast.
,
88
(
2
), pp.
151
184
.
7.
Hadi Hafezi
,
M.
, and
Kundu
,
T.
,
2018
, “
Peri-Ultrasound Modeling of Dynamic Response of an Interface Crack Showing Wave Scattering and Crack Propagation
,”
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
1
(
1
).
8.
Hafezi
,
M. H.
,
Alebrahim
,
R.
, and
Kundu
,
T.
,
2017
, “
Peri-Ultrasound for Modeling Linear and Nonlinear Ultrasonic Response
,”
Ultrasonics
,
80
, pp.
47
57
.
9.
Zhang
,
G.
,
Li
,
X.
,
Zhang
,
S.
, and
Kundu
,
T.
,
2022
, “
Sideband Peak Count-Index Technique for Monitoring Multiple Cracks in Plate Structures Using Ordinary State-Based Peri-Ultrasound Theory
,”
J. Acoust. Soc. Am.
,
152
(
5
), pp.
3035
3048
.
10.
Zhang
,
G.
,
Li
,
X.
,
Li
,
T.
, and
Kundu
,
T.
,
2024
, “
Ordinary State-Based Peri-Ultrasound Modeling for Monitoring Crack Propagation in Plate Structures Using Sideband Peak Count-Index Technique
,”
J. Sound Vib.
,
568
, pp.
117962
.
11.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2021
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro-Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Health Monit.
,
20
(
1
), pp.
139
150
.
12.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT E Int.
,
66
, pp.
106
116
.
13.
Gebrekidan
,
S. B.
,
Kang
,
T.
,
Kim
,
H.-J.
, and
Song
,
S.-J.
,
2018
, “
Nonlinear Ultrasonic Characterization of Early Degradation of Fatigued Al6061-T6 With Harmonic Generation Technique
,”
Ultrasonics
,
85
, pp.
23
30
.
14.
Matlack
,
K. H.
,
Kim
,
J.-Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2015
, “
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
,”
J. Nondestruct. Eval.
,
34
(
1
), pp.
273
.
15.
Boccardi
,
S.
,
Fierro
,
G. P. M.
, and
Meo
,
M.
,
2021
, “
Nonlinear Ultrasonic Imaging of Damage in Composite Materials Using a Higher Harmonic and Modulated Multi-Path Reciprocal Method
,”
Struct. Health Monit.
,
20
(
6
), pp.
2953
2962
.
16.
Wei
,
L.
, and
Chen
,
J.
,
2022
, “
Characterization of Delamination Features of Orthotropic CFRP Laminates Using Higher Harmonic Generation Technique: Experimental and Numerical Studies
,”
Compos. Struct.
,
285
, pp.
115239
.
17.
Shah
,
A. A.
,
Ribakov
,
Y.
, and
Hirose
,
S.
,
2009
, “
Nondestructive Evaluation of Damaged Concrete Using Nonlinear Ultrasonics
,”
Mater. Des.
,
30
(
3
), pp.
775
782
.
18.
Aslam
,
M.
,
Nagarajan
,
P.
, and
Remanan
,
M.
,
2022
, “
Nonlinear Ultrasonic Evaluation of Damaged Concrete Based on Mixed Harmonic Generation
,”
Struct. Control Health Monit.
,
29
(
12
), pp.
e3110
.
19.
Romer
,
A.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2016
, “
The Second Harmonic Generation in Reflection Mode: An Analytical, Numerical and Experimental Study
,”
J. Nondestruct. Eval.
,
35
(
1
), pp.
1
10
.
20.
Liu
,
Y.
,
Li
,
X.
,
Zhang
,
G.
,
Zhang
,
S.
, and
Jeong
,
H.
,
2020
, “
Characterizing Microstructural Evolution of TP304 Stainless Steel Using a Pulse-Echo Nonlinear Method
,”
Materials
,
13
(
6
), pp.
1395
.
21.
Mohseni
,
H.
, and
Ng
,
C. T.
,
2018
, “
Higher Harmonic Generation of Rayleigh Wave at Debondings in FRP-Retrofitted Concrete Structures
,”
Smart Mater. Struct.
,
27
(
10
), pp.
105038
.
22.
Yang
,
Y.
,
Ng
,
C.-T.
, and
Kotousov
,
A.
,
2019
, “
Second-Order Harmonic Generation of Lamb Wave in Prestressed Plates
,”
J. Sound Vib.
,
460
, pp.
114903
.
23.
Kundu
,
T.
,
Eiras
,
J. N.
,
Li
,
W.
,
Liu
,
P.
,
Sohn
,
H.
, and
Paya
,
J.
,
2019
, “Chapter 1: Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count,”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
, ed.,
Springer Nature
,
Switzerland
, pp.
1
88
.
24.
Yeung
,
C.
, and
Ng
,
C. T.
,
2020
, “
Nonlinear Guided Wave Mixing in Pipes for Detection of Material Nonlinearity
,”
J. Sound Vib.
,
485
, pp.
115541
.
25.
Park
,
J.
,
Choi
,
J.
, and
Lee
,
J.
,
2021
, “
A Feasibility Study for a Nonlinear Guided Wave Mixing Technique
,”
Appl. Sci.
,
11
(
14
), pp.
6569
.
26.
Li
,
W.
,
Lan
,
Z.
,
Hu
,
N.
, and
Deng
,
M.
,
2021
, “
Modeling and Simulation of Backward Combined Harmonic Generation Induced by one-way Mixing of Longitudinal Ultrasonic Guided Waves in a Circular Pipe
,”
Ultrasonics
,
113
, pp.
106356
.
27.
Lan
,
Z.
,
Li
,
W.
,
Deng
,
M.
, and
Okabe
,
Y.
,
2023
, “
Combined Harmonic Generation of Feature Guided Waves Mixing in a Welded Joint
,”
Wave Motion
,
117
, pp.
103103
.
28.
Donskoy
,
D.
,
Sutin
,
A.
, and
Ekimov
,
A.
,
2001
, “
Nonlinear Acoustic Interaction on Contact Interfaces and Its Use for Nondestructive Testing
,”
NDT E Int.
,
34
(
4
), pp.
231
238
.
29.
Shui
,
G.
,
Kim
,
J.-Y.
,
Qu
,
J.
,
Wang
,
Y.-S.
, and
Jacobs
,
L. J.
,
2008
, “
A New Technique for Measuring the Acoustic Nonlinearity of Materials Using Rayleigh Waves
,”
NDT E Int.
,
41
(
5
), pp.
326
329
.
30.
Zhang
,
G.
,
Hu
,
B.
,
Alnuaimi
,
H.
,
Amjad
,
U.
, and
Kundu
,
T.
,
2024
, “
Numerical Modeling With Experimental Verification Investigating the Effect of Various Nonlinearities on the Sideband Peak Count-Index Technique
,”
Ultrasonics
,
138
, pp.
107259
.
31.
Zhang
,
G.
,
Li
,
X.
,
Li
,
T.
, and
Kundu
,
T.
,
2023
, “
Monitoring Elastoplastic Deformation in Ductile Metallic Materials Using Sideband Peak Count-Index (SPC-I) Technique
,”
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
6
, pp.
1
15
.
32.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Park
,
S.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2022
, “
An Improved Nonlinear Ultrasonic Technique for Detecting and Monitoring Impact Induced Damage in Composite Plates
,”
Ultrasonics
,
119
, pp.
106620
.
33.
Alnuaimi
,
H. N.
,
Sasmal
,
S.
,
Amjad
,
U.
,
Nikvar-Hassani
,
A.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2021
, “
Monitoring Concrete Curing by Linear and Nonlinear Ultrasonic Methods
,”
ACI Mater. J.
,
118
(
3
), pp.
61
69
.
34.
Basu
,
S.
,
Thirumalaiselvi
,
A.
,
Sasmal
,
S.
, and
Kundu
,
T.
,
2021
, “
Nonlinear Ultrasonics-Based Technique for Monitoring Damage Progression in Reinforced Concrete Structures
,”
Ultrasonics
,
115
, pp.
106472
.
35.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
4
(
4
).
36.
Nikvar-Hassani
,
A.
,
Alnuaimi
,
H. N.
,
Amjad
,
U.
,
Sasmal
,
S.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2022
, “
Alkali Activated Fly Ash-Based Concrete: Evaluation of Curing Process Using Non-Linear Ultrasonic Approach
,”
J. Nondestruct. Eval., Diagn. Progn. Eng. Syst.
,
5
(
2
).
37.
Park
,
S. H.
,
Bokhari
,
I.
,
Alnuaimi
,
H.
,
Amjad
,
U.
,
Fleischman
,
R.
, and
Kundu
,
T.
,
2024
, “
Early Detection of Steel Tube Welded Joint Failure Using SPC-I Nonlinear Ultrasonic Technique
,”
Struct. Health. Monit.
, p.
14759217241235057
.
38.
Castellano
,
A.
,
Fraddosio
,
A.
,
Kundu
,
T.
, et al
,
2022
, “
SPC Non-Linear Ultrasonic Technique for Detecting Adhesion Defects in FRCM Reinforcements for Masonry Constructions. Health Monitoring of Structural and Biological Systems XVI
,”
SPIE
,
12048
, pp.
288
299
.
39.
Wang
,
M.
,
Pau
,
A.
,
Zhang
,
G.
, and
Kundu
,
T.
,
2023
, “
Monitoring Prestress in Plates by Sideband Peak Count-Index (SPC-I) and Nonlinear Higher Harmonics Techniques
,”
Nonlinear Dyn.
,
111
(
17
), pp.
15749
15766
.
You do not currently have access to this content.