Abstract

The objective of this article is to develop an effective method for material discrimination, distinguishing specifically between light metallic materials and heavy ones at low X-ray energies. In this research, Monte Carlo simulations are employed to investigate the influential factors affecting material discrimination. Initially, for result validation, the experimental setup is fully simulated based on the Monte Carlo method. The X-ray spectrum of 160 keV is simulated, and then it is registered after interacting with step wedges made of iron, aluminum, graphite, and ABS at specific thicknesses, capturing the radiation flux at each step. The results are compared with the experimental findings obtained from a dual-layer detector, demonstrating excellent agreement. In practice, the dual-layer detector comprises a low-energy GOS detector, a copper filter, and a high-energy CsI(Tl) detector. The energy spectra of the registered X-rays on each layer of detectors are obtained using the Monte Carlo method. Materials with low, medium, and high atomic numbers are chosen for analysis. These materials are categorized into three groups: organic materials (comprising both light and heavy organic and biological substances), light metals, and heavy metals. Discrimination between materials is achieved independently of their thickness by utilizing a material classification map (MCM) derived from a graph depicting the transmission ratio of low-energy X-ray photons versus the linear attenuation coefficient ratio for various materials with different atomic numbers. The results have been successfully validated through testing with various materials and thicknesses using both the experimental setup and Monte Carlo simulations.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Moshkbar-Bakhshayesh
,
K.
,
Afarideh
,
H.
, and
Azimirad
,
R.
,
2023
, “
Inspection of Cargo Using Dual-Energy X-Ray Radiography: A Review
,”
Radiat. Phys. Chem.
,
212
, p.
111180
.
2.
Rebuffel
,
V.
, and
Dinten
,
J.-M.
,
2007
, “
Dual-Energy X-Ray Imaging: Benefits and Limits
,”
Insight: Non-Destr. Test. Cond. Monit.
,
49
(
10
), pp.
589
594
.
3.
Ogorodnikov
,
S.
, and
Petrunin
,
V.
,
2002
, “
Processing of Interlaced Images in 4–10 MeV Dual Energy Customs System for Material Recognition
,”
Phys. Rev. Spec. Top. Accel Beams
,
5
(
10
), p.
104701
.
4.
Chen
,
G.
,
Bennett
,
G.
, and
Perticone
,
D.
,
2007
, “
Dual-Energy X-Ray Radiography for Automatic High-Z Material Detection
,”
Nucl. Instrum. Methods Phys. Res. B
,
261
(
1–2
), pp.
356
359
.
5.
Chuang
,
K.-S.
, and
Huang
,
H. K.
,
1988
, “
Comparison of Four Dual Energy Image Decomposition Methods
,”
Phys. Med. Biol.
,
33
(
4
), p.
455
.
6.
Hyun Kim
,
K.
,
Eun Yoon
,
S.
, and
Sub Jun
,
I.
,
2007
, “
New Sandwich Type Detector Module and Its Characteristic for Baggage Inspection System
,”
2007 IEEE Nuclear Science Symposium Conference Record
,
Honolulu, HI
,
Oct. 26–Nov. 3
, Vol. 2, IEEE, pp.
1191
1194
.
7.
Gil
,
Y.
,
Oh
,
Y.
,
Cho
,
M.
, and
Namkung
,
W.
,
2011
, “
Radiography Simulation on Single-Shot Dual-Spectrum X-Ray for Cargo Inspection System
,”
Appl. Radiat. Isot.
,
69
(
2
), pp.
389
393
.
8.
Abbasi
,
S.
,
Mohammadzadeh
,
M.
, and
Zamzamian
,
M.
,
2019
, “
A Novel Dual High-Energy X-Ray Imaging Method for Materials Discrimination
,”
Nucl. Instrum. Methods Phys. Res. A
,
930
, pp.
82
86
.
9.
Khan
,
S. U.
,
Khan
,
I. U.
,
Ullah
,
I.
,
Saif
,
N.
, and
Ullah
,
I.
,
2020
, “
A Review of Airport Dual Energy X-Ray Baggage Inspection Techniques: Image Enhancement and Noise Reduction
,”
J X-ray Sci Technol
,
28
(
3
), pp.
481
505
.
10.
Pourghassem
,
H.
,
Sharifi-Tehrani
,
O.
, and
Nejati
,
M.
,
2011
, “
A Novel Weapon Detection Algorithm in X-Ray Dual-Energy Images Based on Connected Component Analysis and Shape Features
,”
Aust. J. Basic Appl. Sci.
,
5
(
12
), pp.
300
307
.
11.
Mazoochi
,
A.
,
Rahmani
,
F.
,
Abbasi Davani
,
F.
, and
Ghaderi
,
R.
,
2014
, “
A Novel Numerical Method to Eliminate Thickness Effect in Dual Energy X-Ray Imaging Used in Baggage Inspection
,”
Nucl. Instrum. Methods Phys. Res. A
,
763
, pp.
538
542
.
12.
Chouai
,
M.
,
Merah
,
M.
,
Sancho-Gomez
,
J.-L.
, and
Mimi
,
M.
,
2019
, “
Dual-Energy X-Ray Images Enhancement Based on a Discrete Wavelet Transform Fusion Technique for Luggage Inspection at Airport
,”
2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA)
,
Mostaganem, Algeria
,
November 2019
, IEEE, pp.
1
6
.
13.
Zhang
,
Y.
,
Kong
,
W.
,
Li
,
D.
, and
Liu
,
X.
,
2020
, “
On Using XMC R-CNN Model for Contraband Detection Within X-Ray Baggage Security Images
,”
Math. Probl. Eng.
,
2020
, pp.
1
14
.
14.
Wang
,
Q.
,
Teng
,
G.
,
Li
,
C.
,
Zhao
,
Y.
, and
Peng
,
Z.
,
2019
, “
Identification and Classification of Explosives Using Semi-Supervised Learning and Laser-Induced Breakdown Spectroscopy
,”
J. Hazard Mater.
,
369
, pp.
423
429
.
15.
Yalçın
,
O.
, and
Reyhancan
,
İA
,
2022
, “
Detection of Explosive Materials in Dual-Energy X-Ray Security Systems
,”
Nucl. Instrum. Methods Phys. Res. A
,
1040
, p.
167265
.
16.
Waters
,
L. S.
,
McKinney
,
G. W.
,
Durkee
,
J. W.
,
Fensin
,
M. L.
,
Hendricks
,
J. S.
,
James
,
M. R.
,
Johns
,
R. C.
, and
Pelowitz
,
D. B.
,
2007
, “
The MCNPX Monte Carlo Radiation Transport Code
,”
AIP Conference Proceedings
,
Illinois
,
March 2007
, pp.
81
90
.
17.
Li
,
L.
,
Zhao
,
T.
, and
Chen
,
Z.
,
2018
, “
First Dual MeV Energy X-Ray CT for Container Inspection: Design, Algorithm, and Preliminary Experimental Results
,”
IEEE Access
,
6
, pp.
45534
45542
.
18.
Santos
,
A. G. M.
,
Dam
,
R. S. F.
,
Salgado
,
W. L.
,
Schirru
,
R.
, and
Salgado
,
C. M.
,
2020
, “
Determination of Mass Attenuation Coefficient of Polylactic Acid Using Gamma Densitometry in 50–1000 keV Energy Range
,”
Radiat. Phys. Chem.
,
177
, p.
109097
.
19.
Akkurt
,
I.
,
Mavi
,
B.
,
Akkurt
,
A.
,
Basyigit
,
C.
,
Kilincarslan
,
S.
, and
Yalim
,
H. A.
,
2005
, “
Study on Dependence of Partial and Total Mass Attenuation Coefficients
,”
J. Quant. Spectrosc. Radiat. Transfer
,
94
(
3–4
), pp.
379
385
.
20.
Cantatore
,
A.
, and
Müller
,
P.
,
2011
,
Introduction to Computed Tomography
,
DTU Mechanical Engineering
,
Denmark
.
21.
Kwong
,
J.
, and
Langeveld
,
W. G. J.
,
2016
, “
A Noise Spectroscopy Detector Array for Non-Intrusive Cargo Inspection
,”
IEEE Trans. Nucl. Sci.
,
63
(
2
), pp.
516
523
.
22.
Ghaebi
,
M.
,
Tajik
,
M.
, and
Azimirad
,
R.
,
2022
, “
Studying the Effect of the Scanned Objects’ Location on Material Discrimination in a Dual-Energy Cargo Inspection System
,”
Nucl. Instrum. Methods Phys. Res. B
,
510
, pp.
39
48
.
23.
Ghaebi
,
M.
,
Tajik
,
M.
, and
Azimirad
,
R.
,
2023
, “
Investigating Four Algorithms for Material Discrimination in a Simulated Dual-Energy Radiography System
,”
Appl. Radiat. Isot.
,
199
, p.
110915
.
24.
Lee
,
D.
,
Lee
,
J.
,
Min
,
J.
,
Lee
,
B.
,
Lee
,
B.
,
Oh
,
K.
,
Kim
,
J.
, and
Cho
,
S.
,
2018
, “
Efficient Material Decomposition Method for Dual-Energy X-Ray Cargo Inspection System
,”
Nucl. Instrum. Methods Phys. Res. A
,
884
, pp.
105
112
.
25.
Ghafarzadeh
,
M.
,
Kejani
,
M. T.
, and
Asadi
,
A.
, “
CTPOS: A Simulation Toolkit for Industrial CT Parameters Optimization
,”
13th International Conference on Industrial Computed Tomography
,
Wels, Austria
,
Feb. 6–9
.
26.
Nazemi
,
E.
,
Rokrok
,
B.
,
Movafeghi
,
A.
,
Dinca
,
M.
, and
Kabir
,
M.
,
2019
, “
Calculation of air Kerma Inside the Radiation Field of X-Ray Tube
,”
Radiat Meas
,
124
, pp.
79
84
.
27.
Knoll
,
G. F.
,
2010
,
Radiation Detection and Measurement
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Ghafarzadeh
,
M.
,
Kejani
,
M. T.
, and
Asadi
,
A.
, “
A Single Material Beam Hardening Reduction Approach for Industrial X-Ray CT Images Utilizing Convolutional Neural Network
,”
13th International Conference on Industrial Computed Tomography
,
Wels, Austria
,
Feb. 6–9
.
29.
Ghafarzadeh
,
M.
,
Kejani
,
M. T.
,
Karimi
,
M.
, and
Asadi
,
A.
,
2024
, “
Computed Tomography Artifact Reduction Employing a Convolutional Neural Network Within the Context of Dimensional Metrology
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
7
(
1
), p.
011001
.
You do not currently have access to this content.