Abstract

This journal paper explores the application of Deep Learning (DL)-based Time-Series Classification (TSC) algorithms in ultrasonic testing for pipeline inspection. The utility of Electromagnetic Acoustic Transducers (EMAT) as a non-contact ultrasonic testing technique for compact robotic platforms is emphasized, prioritizing computational efficiency in defect detection over pinpoint accuracy. To address limited sample availability, the study conducts benchmarking of four methods to enable comparative evaluation of classification times. The core of the DL-based TSC approach involves training DL models using varied proportions (60%, 80%, and 100%) of the available training dataset. This investigation demonstrates the adaptability of DL-enabled anomaly detection with shifting data sizes, showcasing the AI-driven process's robustness in identifying pipeline irregularities. The outcomes underscore the pivotal role of artificial intelligence (AI) in facilitating semi-accurate but swift anomaly detection, thereby streamlining subsequent focused inspections on pipeline areas of concern. By synergistically integrating EMAT technology and DL-driven TSC, this research contributes to enhancing the precision and near real-time inspection capabilities of pipeline assessment. This investigation collectively highlights the potential of DL networks to revolutionize pipeline inspection by rapidly and accurately analyzing ultrasound waveform data.

References

1.
Nemati
,
H.
,
Alvidrez
,
F.
,
Das
,
A.
,
Masurkar
,
N.
,
Rudraboina
,
M.
,
Marvi
,
H.
, and
Dehghan-Niri
,
E.
,
2021
, “
Integrating Electromagnetic Acoustic Transducers in a Modular Robotic Gripper for Inspecting Tubular Components
,”
Mater. Eval.
,
79
(
7
), pp.
79
86
.
2.
Vakhguelt
,
A.
,
Kapayeva
,
S. D.
,
Bergander
,
M. J.
, and
Khairaliyev
,
S. I.
,
2017
, “
Nondestructive Evaluation of Creep and Overheating Damage in Low-Carbon Steel Boiler Tubes
,”
Proceedings of the 15th Asia Pacific Conference for Non-Destructive Testing
,
Singapore
,
Nov. 13–17
.
3.
Chattopadhyay
,
P.
,
Ghoshal
,
S.
,
Majumder
,
A.
, and
Dikshit
,
H.
,
2018
, “
Locomotion Methods of Pipe Climbing Robots: A Review
,”
J. Eng. Sci. Technol. Rev.
,
11
(
4
), pp.
154
165
.
4.
Lee
,
N.-H.
,
Kim
,
S.
,
Choe
,
B.-H.
,
Yoon
,
K.-B.
, and
Kwon
,
D.-I.
,
2009
, “
Failure Analysis of a Boiler Tube in USC Coal Power Plant
,”
Eng. Failure Anal.
,
16
(
7
), pp.
2031
2035
.
5.
Ranjbar
,
K.
,
2007
, “
Failure Analysis of Boiler Cold and Hot Reheater Tubes
,”
Eng. Failure Anal.
,
14
(
4
), pp.
620
625
.
6.
Lattanzi
,
D.
, and
Miller
,
G.
,
2017
, “
Review of Robotic Infrastructure Inspection Systems
,”
J. Infrastruct. Syst.
,
23
(
3
), p.
04017004
.
7.
Lee
,
S. H.
,
2013
, “
Design of the Out-Pipe Type Pipe Climbing Robot
,”
Int. J. Precis. Eng. Manuf.
,
14
(
9
), pp.
1559
1563
.
8.
Pham
,
T. D.
,
2021
, “
Time–Frequency Time–Space LSTM for Robust Classification of Physiological Signals
,”
Sci. Rep.
,
11
(
1
), pp.
1
11
.
9.
Roh
,
S.-G.
, and
Choi
,
H. R.
,
2005
, “
Differential-Drive In-Pipe Robot for Moving Inside Urban Gas Pipelines
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
1
17
.
10.
Roh
,
S.
,
Kim
,
D. W.
,
Lee
,
J.-S.
,
Moon
,
H.
, and
Choi
,
H. R.
,
2009
, “
In-Pipe Robot Based on Selective Drive Mechanism
,”
Int. J. Control, Autom. Syst.
,
7
(
1
), pp.
105
112
.
11.
Neubauer
,
W.
,
1994
, “
A Spider-Like Robot That Climbs Vertically in Ducts or Pipes
,”
Proceedings of the Conference on Intelligent Robots and Systems (IROS'94).
Munich, Germany
:
IEEE
, pp.
1178
1185
.
12.
Xiao
,
S.
,
Bing
,
Z.
,
Huang
,
K.
, and
Huang
,
Y.
,
2017
, “
Snake-Like Robot Climbs Inside Different Pipes
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, Macao
,
Dec. 5–8
, IEEE, pp.
1232
1239
.
13.
Bekhit
,
A.
,
Dehghani
,
A.
, and
Richardson
,
R.
,
2012
, “
Kinematic Analysis and Locomotion Strategy of a Pipe Inspection Robot Concept for Operation in Active Pipelines
,”
Int. J. Mech. Eng. Mech.
,
1
(
2
), pp.
15
27
.
14.
Qiao
,
J.
,
Shang
,
J.
, and
Goldenberg
,
A.
,
2012
, “
Development of Inchworm In-Pipe Robot Based on Self-Locking Mechanism
,”
IEEE/ASME Trans. Mech.
,
18
(
2
), pp.
799
806
.
15.
Han
,
S.
,
Ahn
,
J.
, and
Moon
,
H.
,
2016
, “
Remotely Controlled Prehensile Locomotion of a Two-Module 3D Pipe-Climbing Robot
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1875
1882
.
16.
Marvi
,
H.
,
Dehghan-Niri
,
E.
, and
Ilami
,
M.
,
2022
,
Systems and Methods for Robotic Sensing, Repair and Inspection
. U.S. Patent No. 11,504,854. Nov. 22.
17.
Hills
,
J.
,
Lines
,
J.
,
Baranauskas
,
E.
,
Mapp
,
J.
, and
Bagnall
,
A.
,
2014
, “
Classification of Time Series by Shapelet Transformation
,”
Data Mining Knowl. Discovery
,
28
(
4
), pp.
851
881
.
18.
Esling
,
P.
, and
Agon
,
C.
,
2012
, “
Time-Series Data Mining
,”
ACM Comput. Surveys (CSUR)
,
45
(
1
), pp.
1
34
.
19.
Yang
,
Q.
, and
Wu
,
X.
,
2006
, “
10 Challenging Problems in Data Mining Research
,”
Int. J. Inf. Technol. Decision Making
,
05
(
4
), pp.
597
604
.
20.
Bagnall
,
A.
,
Lines
,
J.
,
Bostrom
,
A.
,
Large
,
J.
, and
Keogh
,
E.
,
2017
, “
The Great Time Series Classification Bake Off: A Review and Experimental Evaluation of Recent Algorithmic Advances
,”
Data Mining Knowl. Discovery
,
31
(
3
), pp.
606
660
.
21.
Ismail Fawaz
,
H.
,
Forestier
,
G.
,
Weber
,
J.
,
Idoumghar
,
L.
, and
Muller
,
P.-A.
,
2019
, “
Deep Learning for Time Series Classification: A Review
,”
Data Mining Knowl. Discovery
,
33
(
4
), pp.
917
963
.
22.
Batista
,
G. E.
,
Wang
,
X.
, and
Keogh
,
E. J.
,
2011
, “
A Complexity-Invariant Distance Measure for Time Series
,”
Proceedings of the 2011 SIAM International Conference on Data Mining
,
Mesa, AZ
,
Apr. 28–30
, pp.
699
710
.
23.
Geurts
,
P.
,
2001
, “
Pattern Extraction for Time Series Classification
,”
Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery
,
Freiburg, Germany
,
Sept. 3–5
, Springer, pp.
115
127
.
24.
Abanda
,
A.
,
Mori
,
U.
, and
Lozano
,
J. A.
,
2019
, “
A Review on Distance Based Time Series Classification
,”
Data Mining Knowl. Discovery
,
33
(
2
), pp.
378
412
.
25.
Mueen
,
A.
,
Keogh
,
E.
, and
Young
,
N.
,
2011
, “
Logical-Shapelets: An Expressive Primitive for Time Series Classification
,”
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Diego CA
,
Aug. 21–24
, pp.
1154
1162
.
26.
Bagnall
,
A.
,
Lines
,
J.
,
Hills
,
J.
, and
Bostrom
,
A.
,
2015
, “
Time-Series Classification With COTE: The Collective of Transformation-Based Ensembles
,”
IEEE Trans. Knowl. Data Eng.
,
27
(
9
), pp.
2522
2535
.
27.
Bagnall
,
A.
,
Davis
,
L.
,
Hills
,
J.
, and
Lines
,
J.
,
2012
, “
Transformation Based Ensembles for Time Series Classification
,”
Proceedings of the 2012 SIAM International Conference on Data Mining
,
Anaheim, CA
,
Apr. 26–28
, pp.
307
318
.
28.
Flynn
,
M.
,
Large
,
J.
, and
Bagnall
,
T.
,
2019
, “
The Contract Random Interval Spectral Ensemble (c-RISE): The Effect of Contracting a Classifier on Accuracy
,”
Proceedings of the International Conference on Hybrid Artificial Intelligence Systems
,
León, Spain
,
Sep. 4–6
.
29.
Lines
,
J.
,
Taylor
,
S.
, and
Bagnall
,
A.
,
2016
, “
Hive-Cote: The Hierarchical Vote Collective of Transformation-Based Ensembles for Time Series Classification
,”
Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM)
,
Barcelona, Spain
,
Dec. 12–15
, IEEE, pp.
1041
1046
.
30.
Schäfer
,
P.
,
2015
, “
The BOSS is Concerned With Time Series Classification in the Presence of Noise
,”
Data Mining Knowl. Discovery
,
29
(
6
), pp.
1505
1530
.
31.
Keogh
,
E.
, and
Kasetty
,
S.
,
2002
, “
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
,”
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
,
Association for Computing Machinery
,
Edmonton, Alberta, Canada
, pp.
102
111
.
32.
Lin
,
J.
,
Khade
,
R.
, and
Li
,
Y.
,
2012
, “
Rotation-Invariant Similarity in Time Series Using Bag-of-Patterns Representation
,”
J. Intell. Inf. Syst.
,
39
(
2
), pp.
287
315
.
33.
Deng
,
H.
,
Runger
,
G.
,
Tuv
,
E.
, and
Vladimir
,
M.
,
2013
, “
A Time Series Forest for Classification and Feature Extraction
,”
Inf. Sci.
,
239
, pp.
142
153
.
34.
Hüsken
,
M.
, and
Stagge
,
P.
,
2003
, “
Recurrent Neural Networks for Time Series Classification
,”
Neurocomputing
,
50
, pp.
223
235
.
35.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
36.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
37.
Sak
,
H.
,
Senior
,
A. W.
, and
Beaufays
,
F.
,
2014
, “
Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
,”
Interspeech
, pp.
338
342
.
38.
Lipton
,
Z. C.
,
Berkowitz
,
J.
, and
Elkan
,
C.
,
2015
, “
A Critical Review of Recurrent Neural Networks for Sequence Learning
,”
CoRR
. https://arxiv.org/abs/1506.00019
39.
Ismail Fawaz
,
H.
,
Lucas
,
B.
,
Forestier
,
G.
,
Pelletier
,
C.
,
Schmidt
,
D. F.
,
Weber
,
J.
,
Webb
,
G. I.
,
Idoumghar
,
L.
,
Muller
,
P.-A.
, and
Petitjean
,
F.
,
2020
, “
Inceptiontime: Finding Alexnet for Time Series Classification
,”
Data Mining Knowl. Discovery
,
34
(
6
), pp.
1936
1962
.
40.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
IEEE
, pp.
1
9
.
41.
Wang
,
Z.
,
Yan
,
W.
, and
Oates
,
T.
,
2017
, “
Time Series Classification From Scratch With Deep Neural Networks: A Strong Baseline
,”
Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN)
,
Anchorage, AK
,
May 14–19
, IEEE, pp.
1578
1585
.
42.
Karim
,
F.
,
Majumdar
,
S.
,
Darabi
,
H.
, and
Chen
,
S.
,
2017
, “
LSTM Fully Convolutional Networks for Time Series Classification
,”
IEEE Access
,
6
, pp.
1662
1669
.
43.
Fauvel
,
K.
,
Lin
,
T.
,
Masson
,
V.
,
Fromont
,
É.
, and
Termier
,
A.
,
2021
, “
Xcm: An Explainable Convolutional Neural Network for Multivariate Time Series Classification
,”
Mathematics
,
9
(
23
), pp.
31
37
.
44.
Kundu
,
T.
,
2003
,
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
,
CRC Press
,
Boca Raton, FL
.
45.
Harris
,
C. R.
,
Millman
,
K. J.
,
Van Der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al
,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.
46.
Box
,
G. E.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
, “Autocorrelation Function and Spectrum of Stationary Processes,”
Time Series Analysis: Forecasting and Control
,
EP
George
,
GM
Jenkins
,
GC
Reinsel
, and
GM
Ljung
, eds.,
John Wiley & Sons
,
Hoboken, New Jersey
, Box,
21
-
46
.
47.
Hintze
,
J. L.
, and
Nelson
,
R. D.
,
1998
, “
Violin Plots: A Box Plot-Density Trace Synergism
,”
Am. Statistician
,
52
(
2
), pp.
181
184
.
48.
Tukey
,
J. W.
,
1993
,
Exploratory Data Analysis: Past, Present and Future
, Department of Statistics,
Princeton University
,
Princeton, NJ
.
49.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
2737
2743
.
You do not currently have access to this content.