Abstract

This paper presents a high-speed noncontact rail inspection technique that has the potential of detecting internal rail defects at regular (revenue) train speeds. The technique utilizes an array of capacitive air-coupled ultrasonic transducers in continuous recording mode to extract a reconstructed transfer function for a rail segment in a passive manner. The passive approach utilizes the ambient excitation of the rail induced by the wheels of the test car and eliminates the need for a controlled source. A normalized cross-correlation operator with modified Welch's periodogram technique is used to extract the transfer function in a manner that is independent of the uncontrolled excitation source (rolling wheels). Discontinuities in the rail (e.g., joints, welds, and defects) alter the reconstructed transfer function which is statistically tracked using an outlier analysis for detection robustness and sensitivity. Field tests were carried out with a prototype at the Transportation Technology Center Inc. (TTCI) in Pueblo, CO at testing speeds of up to 80 mph. The performance of the system in detecting rail discontinuities was assessed via receiver operating characteristic curves for a range of varying operational parameters such as excitation strength, baseline distribution length, testing speed, and multiple runs.

References

1.
Zakar
,
F.
, and
Mueller
,
E.
,
2016
, “
Investigation of a Columbus, Ohio Train Derailment Caused by Fractured Rail
,”
Case Stud. Eng. Fail. Anal.
,
7
(
1
), pp.
41
49
.
2.
Anon
,
F.
,
1990
, “
Rail-Flaw Detection. A Science That Works
,”
Rail. Track Struct.
,
86
(
5
), pp.
30
32
.
3.
Lanza di Scalea
,
F.
,
2007
, “Ultrasonic Testing Applications in the Railroad Industry, Special Applications of Ultrasonic Testing,”
Non-Destructive Testing Handbook
, 3rd ed.,
P. O.
Moore
, ed.,
American Society for Nondestructive Testing
,
Columbus, OH
, pp.
535
552
.
4.
Lanza di Scalea
,
F.
,
Zhu
,
X.
,
Capriotti
,
M.
,
Liang
,
A. Y.
,
Mariani
,
S.
, and
Sternini
,
S.
,
2018
, “
Passive Extraction of Dynamic Transfer Function From Arbitrary Ambient Excitations: Application to High-Speed Rail Inspection From Wheel-Generated Waves
,”
ASME J. Nondestruct. Eval.
,
1
(
1
), p.
011005
.
5.
Weaver
,
R. L.
, and
Lokbis
,
O. I.
,
2004
, “
Diffuse Fields in Open Systems and the Emergence of the Green’s Function (L)
,”
J. Acoust. Soc. Am.
,
116
(
5
), pp.
2731
2734
.
6.
Lanza di Scalea
,
F.
,
Sternini
,
S.
, and
Liang
,
A. Y.
,
2018
, “
Robust Passive Reconstruction of Dynamic Transfer Function in Dual-Output Systems
,”
J. Acoust. Soc. Am
,
143
(
2
), pp.
1019
1028
.
7.
Tippmann
,
J.
, and
Lanza di Scalea
,
F.
,
2015
, “
Passive-Only Damage Detection by Reciprocity of Green’s Functions Reconstructed From Diffuse Acoustic Fields With Application to Wind Turbine Blades
,”
J. Intell. Mater. Syst. Struct.
,
26
(
10
), pp.
1251
1258
.
8.
Tippmann
,
J.
,
Zhu
,
X.
, and
Lanza di Scalea
,
F.
,
2015
, “
Application of Damage Detection Methods Using Passive Reconstruction of Impulse Response Functions
,”
Philos. Trans. R. Soc. A.
,
373
(
2035
), pp.
1
17
.
9.
Yang
,
Y.
,
Xiao
,
L.
,
Qu
,
W.
, and
Lu
,
Y.
,
2017
, “
Passive Detection and Localization of Fatigue Cracking in Aluminum Plates Using Green's Function Reconstruction From Ambient Noise
,”
Ultrasonics
,
81
(
1
), pp.
187
195
.
10.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2005
, “
Detection of Structural Damage From the Local Temporal Coherence of Diffuse Ultrasonic Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
10
), pp.
1769
1782
.
11.
Larose
,
E.
,
Lokbis
,
O. I.
, and
Weaver
,
R. L.
,
2006
, “
Passive Correlation Imaging of a Buried Scatterer
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3549
3552
.
12.
Duroux
,
A.
,
Sabra
,
K. G.
,
Ayers
,
J.
, and
Ruzzene
,
M.
,
2010
, “
Extracting Guided Waves From Cross-Correlations of Elastic Diffuse Fields: Applications to Remote Structural Health Monitoring
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
204
215
.
13.
Chehami
,
L.
,
De Rosny
,
J.
,
Prada
,
C.
,
Moulin
,
E.
, and
Assaad
,
J.
,
2015
, “
Experimental Study of Passive Defect Localization in Plates Using Ambient Noise
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
8
), pp.
1544
1553
.
14.
Sabra
,
K. G.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2005
, “
Emergence Rate of the Time Domain Green’s Function From the Ambient Noise Cross Correlation
,”
J. Acoust. Soc. Am.
,
118
(
6
), pp.
3524
3531
.
15.
Sabra
,
K. G.
,
Roux
,
P.
, and
Kuperman
,
W. A.
,
2005
, “
Arrival-Time Structure of the Time-Averaged Ambient Noise Cross-Correlation Function in an Oceanic Waveguide
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
164
174
.
16.
Salvermoser
,
J.
, and
Hadziioannou
,
C.
,
2015
, “
Structural Monitoring of a High-Way Bridge Using Passive Noise Recordings From Street Traffic
,”
J. Acoust. Soc. Am.
,
138
(
6
), pp.
3864
3872
.
17.
Farrar
,
C.
, and
James
,
G.
,
1997
, “
System Identification From Ambient Vibration Measurements on a Bridge
,”
J. Sound Vib.
,
205
(
1
), pp.
1
18
.
18.
Worden
,
K.
,
Manson
,
G.
, and
Fieller
,
N. R. J.
,
2000
, “
Damage Detection Using Outlier Analysis
,”
J. Sound Vib.
,
229
(
3
), pp.
647
667
.
19.
Worden
,
K.
,
Sohn
,
H.
, and
Farrar
,
C. R.
,
2002
, “
Novelty Detection in a Changing Environment: Regression and Interpolation Approaches
,”
J. Sound Vib.
,
258
(
4
), pp.
741
761
.
20.
Yeager
,
M.
,
Gregory
,
B.
,
Key
,
C.
, and
Todd
,
M.
,
2019
, “
On Using Robust Mahalanobis Distance Estimations for Feature Discrimination in a Damage Detection Scenario
,”
Struct. Health. Monit.
,
18
(
1
), pp.
245
253
.
21.
Mariani
,
S.
,
Nguyen
,
T.
,
Zhu
,
X.
, and
Lanza di Scalea
,
F.
,
2017
, “
Field Test Performance of Non-Contact Ultrasonic Rail Inspection System
,”
ASCE J. Transp. Eng., Part A
,
143
(
5
), p.
040170071
.
22.
Mariani
,
S.
, and
Lanza di Scalea
,
F.
,
2017
, “
Predictions of Defect Detection Performance of Air-Coupled Ultrasonic Rail Inspection System
,”
Struct. Health. Monit.
,
17
(
3
), pp.
684
705
.
23.
Kim
,
J. C.
,
Yun
,
Y. S.
, and
Noh
,
H. M.
,
2019
, “
Analysis of Wheel Squeal and Flanging on Curved Railway Tracks
,”
Int. J. Precis. Eng. Manuf.
,
20
(
12
), pp.
2077
2087
.
You do not currently have access to this content.