Abstract

This work provides a novel method for including mean stress in the American Society of Mechanical Engineers (ASME) Boiler Pressure Vessel Code (BPVC) elastic–plastic fatigue procedure. Typically, the mean stress is accounted for by adjusting the stress-life cycle curve. A new approach is provided by adjusting the effective equivalent stress range with a mean stress correction. This approach is advantageous because this adjustment can be made at each cycle and efficiently implemented in the computation. This new approach allows for fatigue analysis of large-scale models, such as full spacecraft assemblies or a semi-truck trailer. The proposed method is verified by predicting the fatigue life of a test coupon and compared to experimental results.

References

1.
American Society of Mechanical Engineers
,
2019
,
ASME Boiler and Pressure Vessel Code an International Code, No. ASME BPVC.VIII.2-2019, American Society of Mechanical Engineers Boiler and Pressure Vessel Committee, New York
.
2.
Kang
,
G.
, and
Luo
,
H.
,
2020
, “
Review of Fatigue Life Prediction Models of Welded Joint
,”
Acta Mech. Sin.
,
36
(
3
), pp.
701
726
.
3.
Karakas
,
O.
,
2013
, “
Consideration of Mean-Stress Effects on Fatigue Life of Welded Magnesium Joints by the Application of the Smith–Watson–Topper and Reference Radius Concepts
,”
Int. J. Fatigue
,
49
, pp.
1
14
.
4.
Skriko
,
T.
,
Ghafouri
,
M.
, and
Björk
,
T.
,
2017
, “
Fatigue Strength of TIG-Dressed Ultra-High-Strength Steel Fillet Weldjoints at High Stress Ratio
,”
Int. J. Fatigue
,
94
(
Part 1
), pp.
110
120
.
5.
Gaur
,
V.
,
Enoki
,
M.
,
Okada
,
T.
, and
Yomogida
,
S.
,
2018
, “
A Study on Fatigue Behavior of MIG-Welded Al–Mg Alloy With Different Filler-Wire Materials Under Mean Stress
,”
Int. J. Fatigue
,
107
, pp.
119
129
.
6.
Chopra
,
O.
, and
Shack
,
W.
,
2003
, “
Review of the Margins for ASME Code Fatigue Design Curve – Effects of Surface Roughness and Material Variability
,” Technical Report NUREG/CR-6815,ANL-02/39,
U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC
.
7.
Dowling
,
N.
,
Calhoun
,
C.
, and
Arcari
,
A.
,
2009
, “
Mean Stress Effects in Stress-Life Fatigue and the Walker Equation
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
3
), pp.
163
179
.
8.
Palmonella
,
M.
,
Friswell
,
M. I.
,
Mottershead
,
J. E.
, and
Lees
,
A. W.
,
2005
, “
Finite Element Models of Spot Welds in Structural Dynamics: Review and Updating
,”
Comput. Struct.
,
83
(
8
), pp.
648
661
.
9.
Sierra Structural Dynamics Development Team
,
2021
, “
Sierra Structural Dynamics – User’s Manual – 5.0
,” Technical Report SAND2021-2952,
Sandia National Laboratories
, March.
10.
Chen
,
W.
, and
Deng
,
X.
,
2000
, “
Performance of Shell Elements in Modeling Spot-Welded Joints
,”
Finite Elements Anal. Des.
,
35
(
1
), pp.
41
57
.
11.
Jonsson
,
B.
,
Dobmann
,
G.
,
Hobbacher
,
A.
,
Kassner
,
M.
, and
Marquis
,
G.
,
2016
,
IIW Guidelines on Weld Quality in Relationship to Fatigue Strength
,
Springer
,
Switzerland
.
12.
Marin
,
T.
, and
Nicoletto
,
G.
,
2009
, “
Fatigue Design of Welded Joints Using the Finite Element Method and the 2007 ASME Div. 2 Master Curve
,”
Frattura ed Integrit‘a Strutturale
,
9
, pp.
76
84
.
13.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Fatigue Damage Diagnostics of Composites Using Data Fusion and Data Augmentation With Deep Neural Networks
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
2
), p.
021004
.
14.
Ma
,
Z.
,
Yu
,
L.
,
Chao
,
Y. J.
,
Lam
,
P.-S.
,
Sindelar
,
R. L.
,
Duncan
,
A. J.
,
Truong
,
T.-T.
,
Verst
,
C.
,
Sun
,
P.-K.
, and
Campbell
,
A.
,
2022
, “
Nondestructive Evaluation of Stress Corrosion Cracking in a Welded Steel Plate Using Guided Ultrasonic Waves
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
3
), p.
031003
.
15.
Carmi
,
R.
,
Wisner
,
B.
,
Vanniamparambil
,
P. A.
,
Cuadra
,
J.
,
Bussiba
,
A.
, and
Kontsos
,
A.
,
2019
, “
Progressive Failure Monitoring of Fiber-Reinforced Metal Laminate Composites Using a Nondestructive Approach
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
2
(
2
), p.
021006
.
16.
Emery
,
J.
,
Hochhalter
,
J.
,
Wawrzynek
,
P.
,
Heber
,
G.
, and
Ingraffea
,
A.
,
2009
, “
Ddsim: A Hierarchical, Probabilistic, Multiscale Damage and Durability Simulation System Part I: Methodology and Level I
,”
Eng. Fract. Mech.
,
76
(
10
), pp.
1500
1530
.
17.
Azmi
,
M. M.
,
Fujii
,
T.
,
Tohgo
,
K.
, and
Shimamura
,
Y.
,
2017
, “
On the ΔJ-Integral to Characterize Elastic–Plastic Fatigue Crack Growth
,”
Eng. Fract. Mech.
,
176
(
C
), pp.
300
307
.
18.
Hadi Hafezi
,
M.
, and
Kundu
,
T.
,
2017
, “
Peri-Ultrasound Modeling of Dynamic Response of an Interface Crack Showing Wave Scattering and Crack Propagation
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
1
(
1
), p.
011003
.
19.
Palmgren
,
A.
,
1924
, “
Die lebensdauer von kugellagern
,”
Zeitschrift des Vereines Deutscher Ingenieure (ZVDI)
,
13
(
1
), pp.
339
341
.
20.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.
21.
Sierra Solid Mechanics Team
,
2020
, “
Sierra/Solid Mechanics – User’s Guide – 4.58
,” Technical Report SAND2020-10045,
Sandia National Laboratories
, September.
22.
Corona
,
E.
,
Kramer
,
S.
,
Lester
,
B.
,
Jones
,
A.
,
Sanborn
,
B.
,
Shand
,
L.
, and
Fietek
,
C.
,
2021
, “
Thermalmechanical Elastic–Plastic and Ductile Failure Model Calibrations for 304l Stainless Steel Alloy
,” Sandia Report SAND2021-1752,
Sandia National Laboratories
,
Albuquerque, NM
.
23.
Hobbacher
,
A.
,
2008
, “
Recommendations for Fatigue Design of Welded Joints and Components
,” Technical Report IIW Document IIW-1823-07 ex XIII-2151r4-07/XV-1254r4-07,
International Institute of Welding
, December.
24.
Jaćimović
,
N.
, and
Helgesen
,
S. L.
,
2021
, “
Critical Analysis of the New High Cycle Fatigue Assessment Procedure From ASME B31.3 – Appendix W
,”
ASME J. Pressure Vessel Technol.
,
143
(
5
), p.
051201
.
You do not currently have access to this content.