Abstract

A guided wave-based method for localization of breathing delamination is presented in this investigation. The proposed technique utilizes one-way mixing of a dual-frequency fundamental antisymmetric Lamb modes with judiciously selected central frequencies. The dual-frequency interrogation signal, upon interacting with a breathing delamination, leads to additional frequency sidebands in the frequency response spectrum, strength of which is quantified in terms of the combination tone index. The numerical predictions of these sidebands are validated using an in-house experimentation. It is further exposited that the combination tone index depends strongly on the extent of the temporal overlap that the two constituent wave envelopes have as they propagate through the breathing delamination. Accordingly, for a synchronous passage (with 100% temporal overlap), the combination tone index is maximum while it reduces with the decreasing temporal overlap. By utilizing the dispersive nature of the chosen Lamb mode, a relation is then developed correlating the temporal separation of the wave envelopes at the location of the actuator, the group speeds, and the distance between the actuator and the delamination. Based on these inferences, a technique for localizing a breathing delamination is proposed, which involves interrogating the component by systematically altering the temporal overlap in the input waveform and monitoring the combination tone index for its maxima. The efficacy of the localization technique (close to 90%) is demonstrated through an illustrative case analyzed numerically as well as experimentally.

References

1.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
2.
Soleimanpour
,
R.
, and
Ng
,
C.-T.
,
2021
, “
Scattering Analysis of Nonlinear Lamb Waves at Delaminations in Composite Laminates
,”
J. Vib. Control
, p.
1077546321990145
.
3.
Gao
,
T.
,
Liu
,
X.
,
Zhu
,
J.
,
Zhao
,
B.
, and
Qing
,
X.
,
2021
, “
Multi-Frequency Localized Wave Energy for Delamination Identification Using Laser Ultrasonic Guided Wave
,”
Ultrasonics
,
116
, p.
106486
.
4.
Miorelli
,
R.
,
Fisher
,
C.
,
Kulakoviskyi
,
A.
,
Chapuis
,
B.
,
Mesnil
,
O.
, and
D’Almeida
,
O.
,
2021
, “
Defect Sizing in Guided Wave Imaging Structural Health Monitoring Using Convolutional Neural Networks
,”
NDT & E Int.
, p.
102480
.
5.
Van Den Abeele
,
K.-A.
,
Johnson
,
P. A.
, and
Sutin
,
A.
,
2000
, “
Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS)
,”
J. Res. Nondestructive Eval.
,
12
(
1
), p.
001640000003
.
6.
Zaitsev
,
V.
,
Gusev
,
V.
, and
Castagnede
,
B.
,
2003
, “
Thermoelastic Mechanism for Logarithmic Slow Dynamics and Memory in Elastic Wave Interactions With Individual Cracks
,”
Phys. Rev. Lett.
,
90
(
7
), p.
075501
.
7.
Semperlotti
,
F.
,
Wang
,
K. W.
, and
Smith
,
E. C.
,
2009
, “
Localization of a Breathing Crack Using Super-Harmonic Signals Due to System Nonlinearity
,”
AIAA. J.
,
47
(
9
), pp.
2076
2086
.
8.
Joglekar
,
D. M.
, and
Mitra
,
M.
,
2016
, “
Analysis of Flexural Wave Propagation Through Beams With a Breathing Crack Using Wavelet Spectral Finite Element Method
,”
Mech. Syst. Signal. Process.
,
76
, pp.
576
591
.
9.
Gangwar
,
A. S.
,
Agrawal
,
Y.
, and
Joglekar
,
D. M.
,
2021
, “
Nonlinear Interactions of Lamb Waves With a Delamination in Composite Laminates
,”
ASME J. Nondestructive Evaluation
,
4
(
3
), p.
031008
.
10.
Shen
,
Y.
,
2014
, “
Structural Health Monitoring Using Linear and Nonlinear Ultrasonic Guided Waves
,” Ph.D. thesis,
University of South Carolina
,
SC
.
11.
Chillara
,
V. K.
, and
Lissenden
,
C. J.
,
2015
, “
Review of Nonlinear Ultrasonic Guided Wave Nondestructive Evaluation: Theory, Numerics, and Experiments
,”
Opt. Eng.
,
55
(
1
), p.
011002
.
12.
Marcantonio
,
V.
,
Monarca
,
D.
,
Colantoni
,
A.
, and
Cecchini
,
M.
,
2019
, “
Ultrasonic Waves for Materials Evaluation in Fatigue, Thermal and Corrosion Damage: A Review
,”
Mech. Syst. Signal. Process.
,
120
, pp.
32
42
.
13.
Bermes
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2008
, “
Nonlinear Lamb Waves for the Detection of Material Nonlinearity
,”
Mech. Syst. Signal. Process.
,
22
(
3
), pp.
638
646
.
14.
Zhao
,
J.
,
Chillara
,
V. K.
,
Ren
,
B.
,
Cho
,
H.
,
Qiu
,
J.
, and
Lissenden
,
C. J.
,
2016
, “
Second Harmonic Generation in Composites: Theoretical and Numerical Analyses
,”
J. Appl. Phys.
,
119
(
6
), p.
064902
.
15.
Yang
,
Y.
,
Ng
,
C.-T.
,
Kotousov
,
A.
,
Sohn
,
H.
, and
Lim
,
H. J.
,
2018
, “
Second Harmonic Generation at Fatigue Cracks by Low-Frequency Lamb Waves: Experimental and Numerical Studies
,”
Mech. Syst. Signal. Process.
,
99
, pp.
760
773
.
16.
Li
,
W.
,
Cho
,
Y.
, and
Achenbach
,
J. D.
,
2012
, “
Detection of Thermal Fatigue in Composites by Second Harmonic Lamb Waves
,”
Smart Mater. Struct.
,
21
(
8
), p.
085019
.
17.
Soleimanpour
,
R.
,
Ng
,
C.-T.
, and
Wang
,
C. H.
,
2017
, “
Higher Harmonic Generation of Guided Waves at Delaminations in Laminated Composite Beams
,”
Struct. Health. Monit.
,
16
(
4
), pp.
400
417
.
18.
Jingpin
,
J.
,
Xiangji
,
M.
,
Cunfu
,
H.
, and
Bin
,
W.
,
2017
, “
Nonlinear Lamb Wave-Mixing Technique for Micro-Crack Detection in Plates
,”
NDT & E Int.
,
85
, pp.
63
71
.
19.
Joglekar
,
D. M.
,
2020
, “
Analysis of Nonlinear Frequency Mixing in Timoshenko Beams With a Breathing Crack Using Wavelet Spectral Finite Element Method
,”
J. Sound. Vib.
,
488
, p.
115532
.
20.
Jones
,
G. L.
, and
Kobett
,
D. R.
,
1963
, “
Interaction of Elastic Waves in an Isotropic Solid
,”
J. Acoust. Soc. Am.
,
35
(
1
), pp.
5
10
.
21.
Rollins Jr
,
F. R.
,
1963
, “
Interaction of Ultrasonic Waves in Solid Media
,”
Appl. Phys. Lett.
,
2
(
8
), pp.
147
148
.
22.
Croxford
,
A. J.
,
Wilcox
,
P. D.
,
Drinkwater
,
B. W.
, and
Nagy
,
P. B.
,
2009
, “
The Use of Non-Collinear Mixing for Nonlinear Ultrasonic Detection of Plasticity and Fatigue
,”
J. Acoust. Soc. Am.
,
126
(
5
), pp.
EL117
EL122
.
23.
Liu
,
M.
,
Tang
,
G.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2012
, “
Measuring Acoustic Nonlinearity Parameter Using Collinear Wave Mixing
,”
J. Appl. Phys.
,
112
(
2
), p.
024908
.
24.
Chen
,
Z.
,
Tang
,
G.
,
Zhao
,
Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2014
, “
Mixing of Collinear Plane Wave Pulses in Elastic Solids With Quadratic Nonlinearity
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2389
2404
.
25.
Lee
,
D. J.
,
Cho
,
Y.
, and
Li
,
W.
,
2014
, “
A Feasibility Study for Lamb Wave Mixing Nonlinear Technique
,”
AIP Conference Proceedings
,
Baltimore, MD
,
July 21–26
, pp.
662
666
.
26.
Li
,
W.
,
Deng
,
M.
,
Hu
,
N.
, and
Xiang
,
Y.
,
2018
, “
Theoretical Analysis and Experimental Observation of Frequency Mixing Response of Ultrasonic Lamb Waves
,”
J. Appl. Phys.
,
124
(
4
), p.
044901
.
27.
Li
,
F.
,
Zhao
,
Y.
,
Cao
,
P.
, and
Hu
,
N.
,
2018
, “
Mixing of Ultrasonic Lamb Waves in Thin Plates With Quadratic Nonlinearity
,”
Ultrasonics
,
87
, pp.
33
43
.
28.
Metya
,
A. K.
,
Tarafder
,
S.
, and
Balasubramaniam
,
K.
,
2018
, “
Nonlinear Lamb Wave Mixing for Assessing Localized Deformation During Creep
,”
NDT & E Int.
,
98
, pp.
89
94
.
29.
Cho
,
H.
,
Hasanian
,
M.
,
Shan
,
S.
, and
Lissenden
,
C. J.
,
2019
, “
Nonlinear Guided Wave Technique for Localized Damage Detection in Plates With Surface-Bonded Sensors to Receive Lamb Waves Generated by Shear-Horizontal Wave Mixing
,”
NDT & E Int.
,
102
, pp.
35
46
.
30.
Shan
,
S.
,
Hasanian
,
M.
,
Cho
,
H.
,
Lissenden
,
C. J.
, and
Cheng
,
L.
,
2019
, “
New Nonlinear Ultrasonic Method for Material Characterization: Codirectional Shear Horizontal Guided Wave Mixing in Plate
,”
Ultrasonics
,
96
, pp.
64
74
.
31.
Sun
,
M.
,
Xiang
,
Y.
,
Deng
,
M.
,
Tang
,
B.
,
Zhu
,
W.
, and
Xuan
,
F.-Z.
,
2019
, “
Experimental and Numerical Investigations of Nonlinear Interaction of Counter-Propagating Lamb Waves
,”
Appl. Phys. Lett.
,
114
(
1
), p.
011902
.
32.
Guan
,
L.
,
Zou
,
M.
,
Wan
,
X.
, and
Li
,
Y.
,
2020
, “
Nonlinear Lamb Wave Micro-Crack Direction Identification in Plates With Mixed-Frequency Technique
,”
Appl. Sci.
,
10
(
6
), p.
2135
.
33.
Chen
,
H.
,
Gao
,
G.
,
Hu
,
N.
,
Deng
,
M.
, and
Xiang
,
Y.
,
2020
, “
Modeling and Simulation of Frequency Mixing Response of Two Counter-Propagating Lamb Waves in a Two-Layered Plate
,”
Ultrasonics
,
104
, p.
106109
.
34.
Aslam
,
M.
,
Bijudas
,
C. R.
,
Nagarajan
,
P.
, and
Remanan
,
M.
,
2020
, “
Numerical and Experimental Investigation of Nonlinear Lamb Wave Mixing at Low Frequency
,”
J. Aerospace Eng.
,
33
(
4
), p.
04020037
.
35.
Aslam
,
M.
,
Nagarajan
,
P.
, and
Remanan
,
M.
,
2021
, “
Defect Localization Using Nonlinear Lamb Wave Mixing Technique
,”
J. Nondestruct. Eval.
,
40
(
1
), pp.
1
12
.
36.
Joglekar
,
D. M.
, and
Mitra
,
M.
,
2015
, “
Analysis of Nonlinear Frequency Mixing in 1D Waveguides With a Breathing Crack Using the Spectral Finite Element Method
,”
Smart Mater. Struct.
,
24
(
11
), p.
115004
.
37.
Yin
,
J.
,
Wei
,
Q.
,
Zhu
,
L.
, and
Han
,
M.
,
2020
, “
Nonlinear Frequency Mixing of Lamb Wave for Detecting Randomly Distributed Microcracks in Thin Plates
,”
Wave Motion
,
99
, p.
102663
.
38.
Rauter
,
N.
, and
Lammering
,
R.
,
2015
, “
Impact Damage Detection in Composite Structures Considering Nonlinear Lamb Wave Propagation
,”
Mech. Adv. Mater. Struc.
,
22
(
1–2
), pp.
44
51
.
39.
Soleimanpour
,
R.
, and
Ng
,
C.-T.
,
2017
, “
Locating Delaminations in Laminated Composite Beams Using Nonlinear Guided Waves
,”
Eng. Struct.
,
131
, pp.
207
219
.
40.
Hong
,
M.
,
Mao
,
Z.
,
Todd
,
M. D.
, and
Su
,
Z.
,
2017
, “
Uncertainty Quantification for Acoustic Nonlinearity Parameter in Lamb Wave-Based Prediction of Barely Visible Impact Damage in Composites
,”
Mech. Syst. Signal. Process.
,
82
, pp.
448
460
.
41.
Liu
,
X.
,
Bo
,
L.
,
Yang
,
K.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Zhang
,
J.
,
Hu
,
N.
, and
Deng
,
M.
,
2018
, “
Locating and Imaging Contact Delamination Based on Chaotic Detection of Nonlinear Lamb Waves
,”
Mech. Syst. Signal. Process.
,
109
, pp.
58
73
.
42.
Sikdar
,
S.
,
Van Paepegem
,
W.
,
Ostachowicz
,
W.
, and
Kersemans
,
M.
,
2020
, “
Nonlinear Elastic Wave Propagation and Breathing-Debond Identification in a Smart Composite Structure
,”
Composit. Part B: Eng.
,
200
, p.
108304
.
43.
ASTM International
,
2008
, “
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,”
ASTM International
,
Consohohoken, PA
.
44.
Bijudas
,
C.
,
Mitra
,
M.
, and
Mujumdar
,
P.
,
2013
, “
Coupling Effect of Piezoelectric Wafer Transducers in Distortions of Primary Lamb Wave Modes
,”
Smart Mater. Struct.
,
22
(
6
), p.
065007
.
45.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM. J. Res. Dev.
,
11
(
2
), pp.
215
234
.
46.
Kim
,
S.-Y.
,
Shim
,
C. S.
,
Sturtevant
,
C.
, and
Song
,
H. C.
,
2014
, “
Mechanical Properties and Production Quality of Hand-Layup and Vacuum Infusion Processed Hybrid Composite Materials for GFRP Marine Structures
,”
Int. J. Naval Arch. Ocean Eng.
,
6
(
3
), pp.
723
736
.
47.
Giridharan
,
R.
,
2019
, “
Preparation and Property Evaluation of Glass/ramie Fibers Reinforced Epoxy Hybrid Composites
,”
Compos. Part B: Eng.
,
167
, pp.
342
345
.
48.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.
49.
Doyle
,
J. F.
,
2012
,
Wave Propagation in Structures: An FFT-Based Spectral Analysis Methodology
,
Springer Science & Business Media
,
Berlin, Germany
.
You do not currently have access to this content.