Abstract

This study describes a physics-based and data-driven nonlinear system identification (NSI) approach for detecting early fatigue damage due to vibratory loads. The approach also allows for tracking the evolution of damage in real-time. Nonlinear parameters such as geometric stiffness, cubic damping, and phase angle shift can be estimated as a function of fatigue cycles, which are demonstrated experimentally using flexible aluminum 7075-T6 structures exposed to vibration. NSI is utilized to create and update nonlinear frequency response functions, backbone curves and phase traces to visualize and estimate the structural health. Findings show that the dynamic phase is more sensitive to the evolution of early fatigue damage than nonlinear parameters such as the geometric stiffness and cubic damping parameters. A modified Carrella–Ewins method is introduced to calculate the backbone from nonlinear signal response, which is in good agreement with the numerical and harmonic balance results. The phase tracing method is presented, which appears to detect damage after approximately 40% of fatigue life, while the geometric stiffness and cubic damping parameters are capable of detecting fatigue damage after approximately 50% of the life-cycle.

References

1.
Fasel
,
U.
,
Keidel
,
D.
,
Baumann
,
L.
,
Cavolina
,
G.
,
Eichenhofer
,
M.
, and
Ermanni
,
P.
,
2020
, “
Composite Additive Manufacturing of Morphing Aerospace Structures
,”
Manuf. Lett.
,
23
, pp.
85
88
.
2.
Huang
,
J.
,
Fu
,
X.
, and
Jing
,
Z.
,
2021
, “
Singular Dynamics for Morphing Aircraft Switching on the Velocity Boundary
,”
Commun. Nonlinear Sci. Numer. Simul.
,
95
, p.
105625
.
3.
Henry
,
T. C.
,
Johnson
,
T. E.
,
Haynes
,
R. A.
, and
Tran
,
A.
,
2021
, “
Fatigue Performance of Polyamide 12 Additively Manufactured Structures Designed With Topology Optimization
,”
J. Test. Eval.
,
49
(
3
), pp.
1797
1813
.
4.
Allen
,
J.
, and
Ghoreyshi
,
M.
,
2018
, “
Forced Motions Design for Aerodynamic Identification and Modeling of a Generic Missile Configuration
,”
Aerospace Sci. Technol.
,
77
, pp.
742
754
.
5.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.
6.
Kharazan
,
M.
,
Irani
,
S.
, and
Reza Salimi
,
M.
,
2021
, “
Nonlinear Vibration Analysis of a Cantilever Beam With a Breathing Crack and Bilinear Behavior
,”
J. Vib. Control
, p.
10775463211018315
.
7.
Habtour
,
E. M.
,
Cole
,
D. P.
,
Kube
,
C. M.
,
Henry
,
T. C.
,
Haynes
,
R. A.
,
Gardea
,
F.
,
Sano
,
T.
, and
Tinga
,
T.
,
2019
, “
Structural State Awareness Through Integration of Global Dynamic and Local Material Behavior
,”
J. Intell. Mater. Syst. Struct.
,
30
(
9
), pp.
1355
1365
.
8.
Djeziri
,
M.
,
Benmoussa
,
S.
,
Mouchaweh
,
M. S.
, and
Lughofer
,
E.
,
2020
, “
Fault Diagnosis and Prognosis Based on Physical Knowledge and Reliability Data: Application to MOS Field-Effect Transistor
,”
Microelectron. Reliab.
,
110
, p.
113682
.
9.
Gao
,
Z.
, and
Liu
,
X.
,
2021
, “
An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems
,”
Processes
,
9
(
2
), p.
300
.
10.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
303
315
.
11.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
799
834
.
12.
Zhao
,
X. Y.
,
Lang
,
Z.-Q.
,
Park
,
G.
,
Farrar
,
C. R.
,
Todd
,
M. D.
,
Mao
,
Z.
, and
Worden
,
K.
,
2014
, “
A New Transmissibility Analysis Method for Detection and Location of Damage Via Nonlinear Features in MDOF Structural Systems
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1933
1947
.
13.
Wu
,
R.-T.
, and
Jahanshahi
,
M. R.
,
2018
, “
Data Fusion Approaches for Structural Health Monitoring and System Identification: Past, Present, and Future
,”
Struct. Health Monit.
,
19
(
2
), p.
1475921718798769
.
14.
Moore
,
K. J.
,
2019
, “
Characteristic Nonlinear System Identification: A Data-Driven Approach for Local Nonlinear Attachments
,”
Mech. Syst. Signal Process.
,
131
, pp.
335
347
.
15.
Holford
,
K. M.
,
Eaton
,
M. J.
,
Hensman
,
J. J.
,
Pullin
,
R.
,
Evans
,
S. L.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2017
, “
A New Methodology for Automating Acoustic Emission Detection of Metallic Fatigue Fractures in Highly Demanding Aerospace Environments: An Overview
,”
Prog. Aerosp. Sci.
,
90
, pp.
1
11
.
16.
Arslan
,
Ö.
,
Aykan
,
M.
, and
Nevzat Özgüven
,
H.
,
2011
, “
Parametric Identification of Structural Nonlinearities From Measured Frequency Response Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1112
1125
.
17.
Paulus
,
M.
,
Dasgupta
,
A.
, and
Habtour
,
E.
,
2012
, “
Life Estimation Model of a Cantilevered Beam Subjected to Complex Random Vibration
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
11
), pp.
1058
1070
.
18.
Argaman
,
M.
, and
Raveh
,
D. E.
,
2018
, “
Multioutput Autoregressive Aeroelastic System Identification and Flutter Prediction
,”
J. Aircr.
,
56
(
1
), pp.
30
42
.
19.
Liao
,
H.
,
2015
, “
Piecewise Constrained Optimization Harmonic Balance Method for Predicting the Limit Cycle Oscillations of an Airfoil with Various Nonlinear Structures
,”
J. Fluids Struct.
,
55
, pp.
324
346
.
20.
Montoya
,
A.
,
Habtour
,
E.
, and
Moreu
,
F.
,
2020
, “
Quantifying Information Without Entropy: Identifying Intermittent Disturbances in Dynamical Systems
,”
Entropy
,
22
(
11
), p.
1199
.
21.
Shen
,
J.
,
Su
,
Y.
,
Liang
,
Q.
, and
Zhu
,
X.
,
2018
, “
Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVS
,”
Sensors
,
18
(
1
), p.
206
.
22.
Egorov
,
A. G.
,
Kamalutdinov
,
A. M.
, and
Nuriev
,
A. N.
,
2018
, “
Evaluation of Aerodynamic Forces Acting on Oscillating Cantilever Beams Based on the Study of the Damped Flexural Vibration of Aluminium Test Samples
,”
J. Sound Vib.
,
421
, pp.
334
347
.
23.
Khodabakhshi
,
P.
, and
Reddy
,
J. N.
,
2017
, “
A Unified Beam Theory With Strain Gradient Effect and the Von Kármán Nonlinearity
,”
J. Appl. Math. Mech.
,
97
(
1
), pp.
70
91
.
24.
Habtour
,
E.
,
Cole
,
D. P.
,
Stanton
,
S. C.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Damage Precursor Detection for Structures Subjected to Rotational Base Vibration
,”
Int. J. Non-Linear Mech.
,
82
, pp.
49
58
.
25.
Ostachowicz
,
W.
, and
Krawczuk
,
M.
,
1991
, “
Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam
,”
J. Sound Vib.
,
150
(
2
), pp.
191
201
.
26.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Barton
,
D. A.
,
2017
, “
Identifying the Significance of Nonlinear Normal Modes
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2199
), p.
20160789
.
27.
Shaw
,
A. D.
,
Hill
,
T. L.
,
Neild
,
S. A.
, and
Friswell
,
M. I.
,
2016
, “
Periodic Responses of a Structure With 3:1 Internal Resonance
,”
Mech. Syst. Signal Process.
,
81
, pp.
19
34
.
28.
Tatar
,
M.
, and
Masdari
,
M.
,
2019
, “
Investigation of Pitch Damping Derivatives for the Standard Dynamic Model at High Angles of Attack Using Neural Network
,”
Aerospace Sci. Technol.
,
92
, pp.
685
695
.
29.
Ooijevaar
,
T. H.
,
Warnet
,
L. L.
,
Loendersloot
,
R.
,
Akkerman
,
R.
, and
Tinga
,
T.
,
2016
, “
Impact Damage Identification in Composite Skin-Stiffener Structures Based on Modal Curvatures
,”
Struct. Control Health Monit.
,
23
(
2
), pp.
198
217
.
30.
Habtour
,
E.
,
Paulus
,
M.
, and
Dasgupta
,
A.
,
2014
, “
Modeling Approach for Predicting the Rate of Frequency Change of Notched Beam Exposed to Gaussian Random Excitation
,”
Shock Vib.
,
2014
.
31.
Habtour
,
E.
,
Connon
,
W. S.
,
Pohland
,
M. F.
,
Stanton
,
S. C.
,
Paulus
,
M.
, and
Dasgupta
,
A.
,
2014
, “
Review of Response and Damage of Linear and Nonlinear Systems Under Multiaxial Vibration
,”
Shock Vib.
,
2014
.
32.
Ernst
,
M.
,
Habtour
,
E.
, and
Dasgupta
,
A.
,
2016
, “
Examining Steinberg’s Octave Rule Applicability for Electronic Systems Exposed to Multiaxial Vibration
,”
IEEE Trans. Components Pack. Manuf. Technol.
,
6
(
4
), pp.
561
568
.
33.
Thomas
,
O.
,
Sénéchal
,
A.
, and
Deü
,
J.-F.
,
2016
, “
Hardening/Softening Behavior and Reduced Order Modeling of Nonlinear Vibrations of Rotating Cantilever Beams
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1293
1318
.
34.
Akbarzade
,
M.
, and
Farshidianfar
,
A.
,
2017
, “
Nonlinear Transversely Vibrating Beams by the Improved Energy Balance Method and the Global Residue Harmonic Balance Method
,”
Appl. Math. Model.
,
45
, pp.
393
404
.
35.
Butlin
,
T.
,
Woodhouse
,
J.
, and
Champneys
,
A.
,
2015
, “
The Landscape of Nonlinear Structural Dynamics: An Introduction
,”
Phil. Trans. A Roy. Soc.
, A.3732014040020140400.
36.
Habtour
,
E.
,
Sridharan
,
R.
,
Dasgupta
,
A.
,
Robeson
,
M.
, and
Vantadori
,
S.
,
2018
, “
Phase Influence of Combined Rotational and Transverse Vibrations on the Structural Response
,”
Mech. Syst. Signal Process.
,
100
, pp.
371
383
.
37.
Li
,
D.
, and
Shaw
,
S. W.
,
2020
, “
The Effects of Nonlinear Damping on Degenerate Parametric Amplification
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2433
2452
.
38.
Di Sante
,
R.
, and
Di Maio
,
D.
,
2020
, “
Corrigendum to “Measurement of Nonlinear Vibration Response in Aerospace Composite Blades Using Pulsed Airflow Excitation” [Measurement 130 (2018) 422–434] (Measurement (2018) 130 (422–434), (s0263224118307784), (10.1016/j. Measurement. 2018.08. 041))
,”
Meas.: J. Int. Meas. Confederation
,
160
, p.
107879
.
39.
Cao
,
M. S.
,
Sha
,
G. G.
,
Gao
,
Y. F.
, and
Ostachowicz
,
W.
,
2017
, “
Structural Damage Identification Using Damping: A Compendium of Uses and Features
,”
Smart Mater. Struct.
,
26
(
4
), p.
043001
.
40.
Ernst
,
M.
,
Habtour
,
E.
,
Dasgupta
,
A.
,
Pohland
,
M.
,
Robeson
,
M.
, and
Paulus
,
M.
,
2015
, “
Comparison of Electronic Component Durability Under Uniaxial and Multiaxial Random Vibrations
,”
J. Electron. Packag.
,
137
(
1
), p.
011009
.
41.
Peele
,
B.
,
Li
,
S.
,
Larson
,
C.
,
Cortell
,
J.
,
Habtour
,
E.
, and
Shepherd
,
R.
,
2019
, “
Untethered Stretchable Displays for Tactile Interaction
,”
Soft Rob.
,
6
(
1
), pp.
142
149
.
42.
Karličić
,
D.
,
Cajić
,
M.
, and
Adhikari
,
S.
,
2018
, “
Dynamic Stability of a Nonlinear Multiple-Nanobeam System
,”
Nonlinear Dyn.
,
93
(
3
), pp.
1495
1517
.
43.
Burt
,
P. M. S.
, and
de Morais Goulart
,
J. H.
,
2018
, “
Efficient Computation of Bilinear Approximations and Volterra Models of Nonlinear Systems
,”
IEEE Trans. Signal Process.
,
66
(
3
), pp.
804
816
.
44.
Cole
,
D. P.
,
Habtour
,
E. M.
,
Sano
,
T.
,
Fudger
,
S. J.
,
Grendahl
,
S. M.
, and
Dasgupta
,
A.
,
2017
, “
Local Mechanical Behavior of Steel Exposed to Nonlinear Harmonic Oscillation
,”
Exp. Mech.
,
57
(
7
), pp.
1027
1035
.
45.
Vantadori
,
S.
,
Haynes
,
R.
,
Fortese
,
G.
,
Habtour
,
E.
,
Ronchei
,
C.
,
Scorza
,
D.
, and
Zanichelli
,
A.
,
2018
, “
Methodology for Assessing Embryonic Cracks Development in Structures Under High-Cycle Multiaxial Random Vibrations
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
1
), pp.
20
28
.
46.
Habtour
,
E.
,
Cole
,
D. P.
,
Riddick
,
J. C.
,
Weiss
,
V.
,
Robeson
,
M.
,
Sridharan
,
R.
, and
Dasgupta
,
A.
,
2016
, “
Detection of Fatigue Damage Precursor Using a Nonlinear Vibration Approach
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1442
1463
.
47.
Haynes
,
R. A.
,
Habtour
,
E.
,
Henry
,
T. C.
,
Cole
,
D. P.
,
Weiss
,
V.
,
Kontsos
,
A.
, and
Wisner
,
B.
,
2019
, “Damage Precursor Indicator for Aluminum 7075-t6 Based on Nonlinear Dynamics,”
Nonlinear Dynamics
,
G.
Kerschen
, ed., Vol.
1
,
Springer
,
Orlando, FL
, pp.
303
313
.
48.
Henry
,
T.
,
Cole
,
D.
,
Kube
,
C.
,
Fudger
,
S.
,
Haynes
,
R.
,
Mogonye
,
J.
, and
Weiss
,
V.
,
2020
, “
Evaluation of Early Fatigue Signatures in Lightweight Aluminum Alloy 7075
,”
Exp. Mech.
,
60
(
2
), pp.
205
216
.
49.
Chakrapani
,
S. K.
, and
Barnard
,
D. J.
,
2017
, “
Determination of Acoustic Nonlinearity Parameter (β) Using Nonlinear Resonance Ultrasound Spectroscopy: Theory and Experiment
,”
J. Acoust. Soc. Am.
,
141
(
2
), pp.
919
928
.
50.
Molla
,
M. H. U.
,
Razzak
,
M. A.
, and
Alam
,
M. S.
,
2016
, “
Harmonic Balance Method for Solving a Large-Amplitude Oscillation of a Conservative System With Inertia and Static Non-linearity
,”
Results Phys.
,
6
, pp.
238
242
.
51.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2016
, “
A Precise Calculation of Bifurcation Points for Periodic Solution in Nonlinear Dynamical Systems
,”
Appl. Math. Comput.
,
273
, pp.
1190
1195
.
52.
Molnar
,
T. G.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2019
, “
Closed-Form Estimations of the Bistable Region in Metal Cutting Via the Method of Averaging
,”
Int. J. Non-Linear Mech.
,
112
, pp.
49
56
.
53.
Cheng
,
C. M.
,
Peng
,
Z. K.
,
Zhang
,
W. M.
, and
Meng
,
G.
,
2017
, “
Volterra-Series-Based Nonlinear System Modeling and Its Engineering Applications—A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
87
(
2016
), pp.
340
364
.
54.
Hill
,
T. L.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2017
, “
Comparing the Direct Normal Form Method With Harmonic Balance and the Method of Multiple Scales
,”
Proc. Eng.
,
199
, pp.
869
874
.
55.
Lacarbonara
,
W.
,
Carboni
,
B.
, and
Quaranta
,
G.
,
2016
, “
Nonlinear Normal Modes for Damage Detection
,”
Meccanica
,
51
(
11
), pp.
2629
2645
.
56.
Yan
,
Z.
,
Taha
,
H. E.
, and
Tan
,
T.
,
2017
, “
Nonlinear Characteristics of an Autoparametric Vibration System
,”
J. Sound Vib.
,
390
, pp.
1
22
.
57.
Jain
,
S.
, and
Tiso
,
P.
,
2020
, “
Model Order Reduction for Temperature-Dependent Nonlinear Mechanical Systems: A Multiple Scales Approach
,”
J. Sound Vib.
,
465
, p.
115022
.
58.
Chakraborty
,
D.
,
Kovvali
,
N.
,
Papandreou-Suppappola
,
A.
, and
Chattopadhyay
,
A.
,
2015
, “
An Adaptive Learning Damage Estimation Method for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
26
(
2
), pp.
125
143
.
59.
Druce
,
J. M.
,
Haupt
,
J. D.
, and
Gonella
,
S.
,
2015
, “
Anomaly-Sensitive Dictionary Learning for Structural Diagnostics From Ultrasonic Wavefields
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
7
), pp.
1384
1396
.
60.
Yang
,
J.
,
Kang
,
G.
,
Liu
,
Y.
, and
Kan
,
Q.
,
2021
, “
A Novel Method of Multiaxial Fatigue Life Prediction Based on Deep Learning
,”
Int. J. Fatigue
,
151
, p.
106356
.
61.
Zhang
,
Y.
,
Hutchinson
,
P.
,
Lieven
,
N. A.
, and
Nunez-Yanez
,
J.
,
2020
, “
Remaining Useful Life Estimation Using Long Short-Term Memory Neural Networks and Deep Fusion
,”
IEEE Access
,
8
, p.
19 033
.
62.
Koyuncu
,
A.
,
Cigeroglu
,
E.
, and
Özgüven
,
H.
,
2017
, “
Localization and Identification of Structural Nonlinearities Using Cascaded Optimization and Neural Networks
,”
Mech. Syst. Signal Process.
,
95
, pp.
219
238
.
63.
Brewick
,
P. T.
,
Masri
,
S. F.
,
Carboni
,
B.
, and
Lacarbonara
,
W.
,
2017
, “
Enabling Reduced-Order Data-Driven Nonlinear Identification and Modeling Through Naïve Elastic Net Regularization
,”
Int. J. Non-Linear Mech.
,
94
(
February
), pp.
46
58
.
64.
Bosse
,
S.
, and
Lechleiter
,
A.
,
2014
, “
Structural Health and Load Monitoring With Material-Embedded Sensor Networks and Self-Organizing Multi-Agent Systems
,”
Procedia Technol.
,
15
, pp.
668
690
.
65.
Rabiei
,
E.
,
Droguett
,
E. L.
, and
Modarres
,
M.
,
2018
, “
Fully Adaptive Particle Filtering Algorithm for Damage Diagnosis and Prognosis
,”
Entropy
,
20
(
2
), p.
100
.
66.
Olivier
,
A.
, and
Smyth
,
A. W.
,
2017
, “
Review of Nonlinear Filtering for SHM With an Exploration of Novel Higher-Order Kalman Filtering Algorithms for Uncertainty Quantification
,”
J. Eng. Mech.
,
143
(
11
), p.
04017128
.
67.
Andreaus
,
U.
, and
Casini
,
P.
,
2016
, “
Identification of Multiple Open and Fatigue Cracks in Beam-Like Structures Using Wavelets on Deflection Signals
,”
Continuum Mech. Thermodyn.
,
28
(
1–2
), pp.
361
378
.
68.
Renson
,
L.
,
Gonzalez-Buelga
,
A.
,
Barton
,
D. A.
, and
Neild
,
S. A.
,
2016
, “
Robust Identification of Backbone Curves Using Control-Based Continuation
,”
J. Sound Vib.
,
367
, pp.
145
158
.
69.
Xin
,
Y.
,
Hao
,
H.
, and
Li
,
J.
,
2019
, “
Time-Varying System Identification by Enhanced Empirical Wavelet Transform Based on Synchroextracting Transform
,”
Eng. Struct.
,
196
, p.
109313
.
70.
Londoño
,
J. M.
,
Neild
,
S. A.
, and
Cooper
,
J. E.
,
2015
, “
Identification of Backbone Curves of Nonlinear Systems From Resonance Decay Responses
,”
J. Sound Vib.
,
348
, p.
224
238
.
71.
Londoño
,
J. M.
,
Cooper
,
J. E.
, and
Neild
,
S. A.
,
2017
, “
Identification of Systems Containing Nonlinear Stiffnesses Using Backbone Curves
,”
Mech. Syst. Signal Process.
,
84
, pp.
116
135
.
72.
Lu
,
Z. Q.
,
Hu
,
G. S.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2018
, “
Jump-Based Estimation for Nonlinear Stiffness and Damping Parameters
,”
JVC/J. Vib. Control
,
25
(
2
), pp.
325
335
.
73.
Carrella
,
A.
, and
Ewins
,
D.
,
2011
, “
Identifying and Quantifying Structural Nonlinearities in Engineering Applications From Measured Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
1011
1027
.
74.
Dobson
,
B.
,
1987
, “
A Straight-Line Technique for Extracting Modal Properties From Frequency Response Data
,”
Mech. Syst. Signal Process.
,
1
(
1
), pp.
29
40
.
75.
Magi
,
F.
,
Di Maio
,
D.
, and
Sever
,
I.
,
2016
, “
Damage Initiation and Structural Degradation Through Resonance Vibration: Application to Composite Laminates in Fatigue
,”
Compos. Sci. Technol.
,
132
, pp.
47
56
.
76.
Magi
,
F.
,
Di Maio
,
D.
, and
Sever
,
I.
,
2017
, “
Validation of Initial Crack Propagation Under Vibration Fatigue by Finite Element Analysis
,”
Int. J. Fatigue
,
104
, pp.
183
194
.
77.
Voudouris
,
G.
,
Di Maio
,
D.
, and
Sever
,
I. A.
,
2020
, “
Experimental Fatigue Behaviour of CFRP Composites Under Vibration and Thermal Loading
,”
Int. J. Fatigue
,
140
, p.
105791
.
78.
Newman
,
J.
,
2015
, “
Fatigue and Crack-Growth Analyses Under Giga-Cycle Loading on Aluminum Alloys
,”
Procedia Eng.
,
101
, pp.
339
346
.
You do not currently have access to this content.