Abstract

Composite materials can be modified according to the requirements of applications, and hence, their applications are increasing significantly with time. Due to the complex nature of the aging of composites, it is equally challenging to establish structural health monitoring techniques. One of the most applied non-destructive techniques for this class of materials is using Lamb waves to quantify the damage. Another important advancement in damage detection is the application of deep neural networks. The data-driven methods have proven to be most efficient for damage detection in composites. For both of these advanced methods, the burning question always has been the requirement of data and quality of data. In this paper, these measurements were used to create a framework based on a deep neural network for efficient fault diagnostics. The research question developed for this paper was as follows: Can data fusion techniques used along with data augmentation improve the damage diagnostics using the convolutional neural network? The specific aims developed to answer this research question were: (1) highlighting the importance of data fusion methods, (2) underlining the importance of data augmentation techniques, (3) generalization abilities of the proposed framework, and (4) sensitivity of the size of the dataset. The results obtained through the analysis concluded that the artificial intelligence techniques along with the Lamb wave measurements can efficiently improve the fault diagnostics of complex materials such as composites.

References

1.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
Lamb Wave Propagation in Composite Laminates and Its Relationship With Acousto-Ultrasonics
,”
NDT E Int.
,
26
(
2
), pp.
75
84
.
2.
Peng
,
T.
,
Saxena
,
A.
,
Goebel
,
K.
,
Xiang
,
Y.
,
Sankararaman
,
S.
, and
Liu
,
Y.
,
2013
, “
A Novel Bayesian Imaging Method for Probabilistic Delamination Detection of Composite Materials
,”
Smart Mater. Struct.
,
22
(
12
).
3.
Talreja
,
R.
,
2016
, “
Multiscale Modeling of Failure in Composite Materials
,”
Proc. Indian Natl. Sci. Acad.
,
82
(
2
), pp.
173
181
.
4.
Liu
,
H.
,
Liu
,
S.
,
Liu
,
Z.
,
Mrad
,
N.
, and
Dong
,
H.
,
2017
, “
Prognostics of Damage Growth in Composite Materials Using Machine Learning Techniques
,”
Proceedings of the IEEE International Conference on Industrial Technology
,
Toronto, Canada
,
Mar. 22–25
, pp.
1042
1047
.
5.
Molchanov
,
D.
,
Safin
,
A.
, and
Luhyna
,
N.
,
2016
, “
Damage Monitoring of Aircraft Structures Made of Composite Materials Using Wavelet Transforms
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
153
(
1
),
012016
.
6.
Zhao
,
L.
, and
Lai
,
C. Q.
,
2019
, “
Asymmetric Lamb Wave Propagation and Mode Isolation in Thin Plate With Spatiotemporal Periodic Stiffness
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051005
.
7.
Ahmad
,
Z. A. B.
,
2011
, “
Numerical Simulations of Lamb Waves in Plates Using a Semi-Analytical Finite Element Method
,”
Ph.D. dissertation
,
Otto-von-Guericke-Universität Magdeburg
,
Magdeburg, Germany
.
8.
Nazarko
,
P.
, and
Ziemianski
,
L.
,
2016
, “
Damage Detection in Aluminum and Composite Elements Using Neural Networks for Lamb Waves Signal Processing
,”
Eng. Fail. Anal.
,
69
, pp.
97
107
.
9.
Fekrmandia
,
H.
,
Unalb
,
M.
,
Rojas Neva
,
S.
,
Tansel
,
I. N.
, and
McDaniel
,
D.
,
2016
, “
A Novel Approach for Classification of Loads on Plate Structures Using Artificial Neural Networks
,”
Measurement
,
82
, pp.
37
45
.
10.
Fekrmandi
,
H.
, and
Gwon
,
Y. S.
,
2018
, “
A Data-Driven Approach of Load Monitoring on Laminated Composite Plates Using Support Vector Machine
,”
Proceedings of SPIE, Smart Structures and NDE for Industry 4.0
,
Denver, CO
,
Mar. 4–8
, p.
1060206
.
11.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2019
, “
Damage Classification of Composites Using Machine Learning
,”
Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. Volume 13: Safety Engineering, Risk, and Reliability Analysis
,
Salt Lake City, UT
,
Nov. 11–14
, p.
V013T13A017
.
12.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Classification of Composites Based On Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B: Mech Eng.
,
7
(
1
), p.
011002
.
13.
Tiwari
,
K. A.
,
Raisutis
,
R.
, and
Samaitis
,
V.
,
2017
, “
Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures
,”
Sensors
,
17
(
12
),
2858
.
14.
Saxena
,
A.
,
Goebel
,
K.
,
Larrosa
,
C. C.
,
Janapati
,
V.
,
Roy
,
S.
, and
Chang
,
F. K.
,
2011
, “Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials,”
Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures
, Vol.
1
,
F. K.
Chang
, ed.,
DEStech Publishing
,
Lancaster, PA
, pp.
1283
1291
.
15.
Verstraete
,
D.
,
Ferrada
,
A.
,
Droguett
,
E. L.
,
Meruane
,
V.
, and
Modarres
,
M.
,
2017
, “
Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings
,”
Shock Vib.
,
2017
,
5067651
.
16.
Zhao
,
G.
,
Zhang
,
G.
,
Ge
,
Q.
, and
Liu
,
X.
,
2017
, “
Research Advances in Fault Diagnosis and Prognostic Based on Deep Learning
,”
Proceedings of the Prognostics and System Health Management Conference
,
Chengdu, China
,
Oct. 19–21
, pp.
1
6
.
17.
Wang
,
J.
,
Zhuang
,
J.
,
Duan
,
L.
, and
Cheng
,
W.
,
2016
, “
A Multi-Scale Convolution Neural Network for Featureless Fault Diagnosis
,”
Proceedings of the International Symposium on Flexible Automation, ISFA 2016
,
Cleveland, OH
,
Aug. 1–3
, pp.
65
70
.
18.
Cao
,
P.
,
Zhang
,
S.
, and
Tang
,
J.
,
2018
, “
Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning
,”
IEEE Access
,
6
, pp.
26241
26253
.
19.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning With Simulated Data
,”
Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019
,
IEEE
.
20.
Ross
,
A.
, and
Jain
,
A.
,
2003
, “
Information Fusion in Biometrics
,”
Pattern Recognit. Lett.
,
24
(
13
), pp.
2115
2125
.
21.
Bharathi
,
S.
, and
Sudhakar
,
R.
,
2019
, “
Biometric Recognition Using Finger and Palm Vein Images
,”
Soft Comput.
,
23
(
6
), pp.
1843
1855
.
22.
Singh
,
M.
,
Singh
,
R.
, and
Ross
,
A.
,
2019
, “
A Comprehensive Overview of Biometric Fusion
,”
Inf. Fusion
,
52
, pp.
187
205
.
23.
Rheinfurth
,
M.
,
Kosmann
,
N.
,
Sauer
,
D.
,
Busse
,
G.
, and
Schulte
,
K.
,
2012
, “
Composites : Part A Lamb Waves for Non-contact Fatigue State Evaluation of Composites Under Various Mechanical Loading Conditions
,”
Composites Part A
,
43
(
8
), pp.
1203
1211
.
24.
Cot
,
L. D.
,
Ǵomez
,
C.
,
Gamboa
,
F.
,
Kopsaftopoulos
,
F.
, and
Chang
,
F. K.
,
2016
, “
SHM-Based Fatigue Damage Prognostics in Composite Structures
,”
Proceedings of the 8th European Workshop on Structural Health Monitoring, EWSHM 2016
,
Bilbao, Spain
,
July 5–8
.
25.
Alves
,
D. S.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.
26.
Eleftheroglou
,
N.
,
Zarouchas
,
D.
,
Loutas
,
T.
,
Alderliesten
,
R.
, and
Benedictus
,
R.
,
2018
, “
Structural Health Monitoring Data Fusion for In-Situ Life Prognosis of Composite Structures
,”
Reliab. Eng. Syst. Saf.
,
178
, pp.
40
54
.
27.
Kudela
,
P.
,
Radzienski
,
M.
, and
Ostachowicz
,
W.
,
2018
, “
Impact Induced Damage Assessment by Means of Lamb Wave Image Processing
,”
Mech. Syst. Signal Process.
,
102
, pp.
23
36
.
28.
Huang
,
L.
,
Zeng
,
L.
,
Lin
,
J.
, and
Luo
,
Z.
,
2018
, “
An Improved Time Reversal Method for Diagnostics of Composite Plates Using Lamb Waves
,”
Compos. Struct.
,
190
, pp.
10
19
.
29.
De Luca
,
A.
,
Caputo
,
F.
,
Sharif Khodaei
,
Z.
, and
Aliabadi
,
M. H.
,
2018
, “
Damage Characterization of Composite Plates Under Low Velocity Impact Using Ultrasonic Guided Waves
,”
Composites Part B
,
138
, pp.
168
180
.
30.
Daniel
,
I. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
New York
.
31.
Castanedo
,
F.
,
2013
, “
A Review of Data Fusion Techniques
,”
Sci. World J.
,
2013
, pp.
1
9
.
32.
Suthakar
,
J.
,
2014
, “
Study of Image Fusion-Techniques, Method and Applications
,”
Int. J. Comput. Sci. Mob. Comput.
,
3
(
11
), pp.
469
476
.
33.
Solano
,
M. A.
,
Ekwaro-Osire
,
S.
, and
Tanik
,
M. M.
,
2012
, “
High-Level Fusion for Intelligence Applications Using Recombinant Cognition Synthesis
,”
Inf. Fusion
,
13
(
1
), pp.
79
98
.
34.
Wang
,
J.
,
Yang
,
Y.
,
Mao
,
J.
,
Huang
,
Z.
,
Huang
,
C.
, and
Xu
,
W.
,
2016
, “
CNN-RNN: A Unified Framework for Multi-Label Image Classification
,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
2285
2294
.
35.
Liang
,
L.
,
Sun
,
S.
,
Li
,
M.
, and
Li
,
X.
,
2019
, “
Data Fusion Technique for Bridge Safety Assessment
,”
J. Test. Eval.
,
47
(
3
), pp.
2080
2100
.
36.
Chehade
,
A.
,
Song
,
C.
,
Liu
,
K.
,
Saxena
,
A.
, and
Zhang
,
X.
,
2018
, “
A Data-Level Fusion Approach for Degradation Modeling and Prognostic Analysis Under Multiple Failure Modes
,”
J. Qual. Technol.
,
50
(
2
), pp.
150
165
.
37.
Song
,
C.
, and
Liu
,
K.
,
2018
, “
Statistical Degradation Modeling and Prognostics of Multiple Sensor Signals via Data Fusion: A Composite Health Index Approach
,”
IISE Trans.
,
50
(
10
), pp.
853
867
.
38.
Moradi
,
M.
,
Madani
,
A.
,
Karargyris
,
A.
, and
Syeda-Mahmood
,
T. F.
,
2018
, “
Chest X-Ray Generation and Data Augmentation for Cardiovascular Abnormality Classification
,”
Proceedings of the SPIE Medical Imaging
,
Houston, TX
,
Feb. 10–15
.
39.
Lv
,
J. J.
,
Cheng
,
C.
,
Tian
,
G. D.
,
Zhou
,
X. D.
, and
Zhou
,
X.
,
2016
, “
Landmark Perturbation-Based Data Augmentation for Unconstrained Face Recognition
,”
Signal Process. Image Commun.
,
47
, pp.
465
475
.
40.
Ganesan
,
P.
,
Rajaraman
,
S.
,
Long
,
R.
,
Ghoraani
,
B.
, and
Antani
,
S.
,
2019
, “
Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs
,”
Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society
,
Berlin, Germany
,
July 23–27
, pp.
841
844
.
41.
Bendjenna
,
H.
,
Meraoumia
,
A.
, and
Chergui
,
O.
,
2018
, “
Pattern Recognition System: From Classical Methods to Deep Learning Techniques
,”
J. Electron. Imaging
,
27
(
03
), p.
1
.
42.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J. Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
43.
Saxena
,
A.
,
Goebel
,
K.
,
Larrosa
,
C. C.
, and
Chang
,
F.-K.
,
CFRP Composites Data Set, NASA Ames Prognostics Data Repository
,
NASA Ames Research Center
,
Moffett Field, CA
.
44.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2020
, “
Damage Detection of Composite Materials Using Data Fusion With Deep Neural Networks
,”
Proceedings of ASME Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
.
45.
Corbetta
,
M.
,
Sbarufatti
,
C.
,
Giglio
,
M.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2018
, “
A Bayesian Framework for Fatigue Life Prediction of Composite Laminates Under Co-Existing Matrix Cracks and Delamination
,”
Compos. Struct.
,
187
, pp.
58
70
.
46.
Saxena
,
A.
,
Goebel
,
K.
,
Larrosa
,
C. C.
, and
Chang
,
F.-K.
,
2011
, “
CFRP Composites Data Set
”,
NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA
, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
47.
Wang
,
Z.
, and
Oates
,
T.
,
2015
, “
Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks
,”
AAAI Workshop—Technical Report
, pp.
40
46
.
48.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Serwadda
,
A.
,
2019
, “Machine Learning in Crack Size Estimation of a Spur Gear Pair Using Simulated Vibration Data,”
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. Mechanisms and Machine Science
, Vol.
61
,
K. L.
Cavalca
, and
H. I.
Weber
, eds.,
Springer
,
Cham, Switzerland
, pp.
175
190
.
You do not currently have access to this content.