Abstract

With the advent of industry 4.0, which conceptualizes self-monitoring of rotating machine parts by adopting techniques like data analytics, cloud computing, Internet of things, machine learning (ML), and artificial intelligence. The significant research area in predictive maintenance is tool condition monitoring (TCM) as the tool condition affects the overall machining process and its economics. Lately, machine learning techniques are being used to classify the tool’s condition in operation. These techniques are cost saving and help industries with adopting future-proof solutions for their operations. One such technique called discriminant analysis (DA) must be examined particularly for TCM. Owing to its less-expensive computation and shorter run times, using them in TCM will ensure the effective use of the cutting tool and reduce maintenance times. This article presents a Bayesian optimized discriminant analysis model to classify and monitor the tool condition into three user-defined classes. The data are collected using an in-house designed and developed data acquisition (DAQ) module setup on a Vertical Machining Center (VMC). The hyperparameter tuning has been incorporated using Bayesian optimization search, and the parameter that gives the best model was found out to be “linear,” achieving an accuracy of 93.3%. This study confirms the feasibility of machine learning techniques like DA in the field of TCM and using Bayesian optimization algorithms to fine-tune the model, making it industry ready.

References

1.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
König
,
W.
, and
Teti
,
R.
,
1995
, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Application
,”
CIRP Ann.
,
44
(
2
), pp.
541
567
.
2.
Castelo-Branco
,
I.
,
Cruz-Jesus
,
F.
, and
Oliveira
,
T.
,
2019
, “
Assessing Industry 4.0 Readiness in Manufacturing: Evidence for the European Union
,”
Comput. Ind.
,
107
, pp.
22
32
.
3.
Mohanraj
,
T.
,
Shankar
,
S.
,
Rajasekar
,
R.
,
Sakthivel
,
N. R.
, and
Pramanik
,
A.
,
2020
, “
Tool Condition Monitoring Techniques in Milling Process—A Review
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
1032
1042
.
4.
Mohanraj
,
T.
,
Yerchuru
,
J.
,
Krishnan
,
H.
,
Nithin Aravind
,
R. S.
, and
Yameni
,
R.
,
2021
, “
Development of Tool Condition Monitoring System in End Milling Process Using Wavelet Features and Hoelder’s Exponent With Machine Learning Algorithms
,”
Measurement
,
173
, Article No. 108671.
5.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
,
2005
, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
693
710
.
6.
Abukhshim
,
N. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2004
, “
An Investigation of the Tool-Chip Contact Length and Wear in High-Speed Turning of EN19 Steel
,”
Proc. Inst. Mech. Eng. B
,
218
(
8
), pp.
889
903
.
7.
Jantunen
,
E.
,
2002
, “
A Summary of Methods Applied to Tool Condition Monitoring in Drilling
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
997
1010
.
8.
Leo
,
R.
,
2003
, “
Monitoring Improves Machine Up Time and Shop Efficiency
,”
CNC & Machine Controls
, https://www.productionmachining.com/articles/monitoring-improves-machine-up-time-and-shop-efficiency, Accessed on February 20, 2021.
9.
Li
,
X.
,
2001
, “
Real-Time Tool Wear Condition Monitoring in Turning
,”
Int. J. Prod. Res.
,
39
(
5
), pp.
981
992
.
10.
Nayfeh
,
T. H.
,
Eyada
,
O. K.
, and
Duke
,
J. C.
,
1995
, “
An Integrated Ultrasonic Sensor for Monitoring Gradual Wear On-Line During Turning Operations
,”
Int. J. Mach. Tools Manuf.
,
35
(
10
), pp.
1385
1395
.
11.
Painuli
,
S.
,
Elangovan
,
M.
, and
Sugumaran
,
V.
,
2014
, “
Tool Condition Monitoring Using K-Star Algorithm
,”
Expert Syst. Appl.
,
41
(
6
), pp.
2638
2643
.
12.
Patange
,
A. D.
, and
Jegadeeshwaran
,
R.
,
2021
, “
Review on Tool Condition Classification in Milling: A Machine Learning Approach
,”
Mater. Today: Proc.
,
46
(
2
), pp.
1106
1115
.
13.
Patange
,
A. D.
, and
Jegadeeshwaran
,
R.
,
2020
, “
Application of Bayesian Family Classifiers for Cutting Tool Inserts Health Monitoring on CNC Milling
,”
Int. J. Prognost. Health Manage.
,
11
(
2
), pp.
1
13
.
14.
Patange
,
A. D.
, and
Jegadeeshwaran
,
R.
,
2021
, “
A Machine Learning Approach for Vibration-Based Multipoint Tool Insert Health Prediction on Vertical Machining Centre (VMC)
,”
Measurement
,
173
, Article No. 108649.
15.
Khairnar
,
A.
,
Abhishek
,
P.
,
Pardeshi
,
S.
, and
Jegadeeshwaran
,
R.
,
2021
, “
Supervision of Carbide Tool Condition by Training of Vibration-Based Statistical Model Using Boosted Trees Ensemble
,”
Int. J. Performability Eng.
,
17
(
2
), pp.
229
240
.
16.
Shewale
,
M. S.
,
Mulik
,
S. S.
,
Deshmukh
,
S. P.
,
Patange
,
A. D.
,
Zambare
,
H. B.
, and
Sundare
,
A. P.
,
2019
,
Proceedings of the 2nd International Conference on Data Engineering and Communication Technology
,
A.
Kulkarni
,
S.
Satapathy
,
T.
Kang
, and
A.
Kashan
, eds.,
Springer
,
Singapore
, pp.
461
468
.
17.
Patange
,
A. D.
,
Jegadeeshwaran
,
R.
, and
Dhobale
,
N. C.
,
2019
, “
Milling Cutter Condition Monitoring Using Machine Learning Approach
,”
IOP Conference Series: Materials Science and Engineering
,
Chennai, India
,
July 11–13
, Vol.
624
, No.
012030
, pp.
1
7
.
18.
Elangovan
,
M.
,
Ramachandran
,
K. I.
, and
Sugumaran
,
V.
,
2010
, “
Studies on Bayes Classifier for Condition Monitoring of Single Point Carbide Tipped Tool Based on Statistical and Histogram Features
,”
Expert Syst. Appl.
,
37
(
3
), pp.
2059
2065
.
19.
Mileris
,
R.
,
2010
, “
Estimation of Loan Applicants Default Probability Applying Discriminant Analysis and Simple Bayesian Classifier
,”
Econ. Manage.
,
15
(
9
), pp.
1078
1084
.
20.
Wu
,
W.
,
Mallet
,
Y.
,
Walczak
,
B.
,
Penninckx
,
W.
,
Massart
,
D. L.
,
Heuerding
,
S.
, and
Erni
,
F.
,
1996
, “
Comparison of Regularized Discriminant Analysis Linear Discriminant Analysis and Quadratic Discriminant Analysis Applied to NIR Data
,”
Anal. Chim. Acta
,
329
(
3
), pp.
257
265
.
21.
Balabanova
,
I.
,
Kostadinova
,
S.
,
Karapenev
,
B.
, and
Georgiev
,
G.
,
2020
, “
Application of Discriminant Analysis for Signals Identification in Communication Systems
,”
J. Eng. Sci. Technol. Rev.
, pp.
1
8
. http://www.jestr.org/downloads/SpecialIssue2020/fulltext1SE.pdf
22.
Altay
,
O.
, and
Ulas
,
M.
,
2018
, “
Prediction of the Autism Spectrum Disorder Diagnosis With Linear Discriminant Analysis Classifier and K-Nearest Neighbor in Children
,”
2018 6th International Symposium on Digital Forensic and Security (ISDFS)
,
Antalya, Turkey
,
Mar. 22–25
,
IEEE
, pp.
1
4
.
23.
Wang
,
Y. W.
, and
Ni
,
Y. Q.
,
2020
, “
Bayesian Dynamic Forecasting of Structural Strain Response Using Structural Health Monitoring Data
,”
Struct. Control Health Monit.
,
27
(
10
), pp.
1
23
.
24.
Cantero-Chinchilla
,
S.
,
Malik
,
M. K.
,
Chronopoulos
,
D.
, and
Chiachio
,
J.
,
2021
, “
Bayesian Damage Localization and Identification Based on a Transient Wave Propagation Model for Composite Beam Structures
,”
Compos. Struct.
,
267
, Article No. 113849.
25.
Sano
,
S.
,
Kadowaki
,
T.
,
Tsuda
,
K.
, and
Kimura
,
S.
,
2020
, “
Application of Bayesian Optimization for Harmaceutical Product Development
,”
J. Pharm. Innovation
,
15
(
3
), pp.
333
343
.
26.
Li
,
J.
, and
Aickelin
,
U.
,
2004
, “A Bayesian optimization algorithm for the nurse scheduling problem,”
The 2003 Congress on Evolutionary Computation, 2003. CEC '03.
, Vol.
3
,
X.
Yao
, ed.,
IEEE Press
,
Canberra, ACT, Australia
, pp.
2149
2156
.
27.
Hickish
,
B.
,
Fletcher
,
D. I.
, and
Harrison
,
R. F.
,
2020
, “
Investigating Bayesian Optimization for Rail Network Optimization
,”
Int. J. Rail Transp.
,
8
(
10
), pp.
307
323
.
28.
Dimla
,
D. E.
, and
Lister
,
P. M.
,
2000
, “
On-Line Metal Cutting Tool Condition Monitoring I: Force and Vibration Analyses
,”
Int. J. Mach. Tools Manuf.
,
40
(
5
), pp.
739
768
.
29.
Olejarova
,
S.
,
Dobransky
,
J.
,
Svetlik
,
J.
, and
Pituk
,
M.
,
2017
, “
Measurements and Evaluation of Measurements of Vibrations in Steel Milling Process
,”
Measurement
,
106
, pp.
18
25
.
30.
Patange
,
A. D.
,
Bewoor
,
A. K.
,
Deshmukh
,
S. P.
,
Mulik
,
S. S.
,
Pardeshi
,
S. S.
, and
Jegadeeshwaran
,
R.
,
2019
, “
Improving Program Outcome Attainments Using Project Based Learning Approach for: UG Course-Mechatronics
,”
J. Eng. Educ. Transform.
,
33
(
1
), pp.
1
13
.
31.
Ambhore
,
N.
,
Kamble
,
D.
,
Chinchanikar
,
S.
, and
Wayal
,
V.
,
2015
, “
Tool Condition Monitoring System: A Review
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
3419
3428
.
32.
Snoek
,
J.
,
Hugo
,
L.
, and
Ryan
,
P. A.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Adv. Neural Inf. Process. Syst.
,
25
, pp.
2960
2968
.
33.
Khade
,
H. S.
,
Patange
,
A. D.
,
Pardeshi
,
S. S.
, and
Jegadeeshwaran
,
R.
,
2021
, “
Design of Bagged Tree Ensemble for Carbide Coated Inserts Fault Diagnosis
,”
Mater. Today: Proc.
,
46
(
2
), pp.
1283
1289
.
You do not currently have access to this content.