Abstract

This article demonstrates the Gaussian process regression model’s applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs’ patches bonded in a composite aeronautical structure for concerning a novel structural health monitoring (SHM) strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.

References

1.
Kocijan
,
J.
,
Girard
,
A.
,
Banko
,
B.
, and
Murray-Smith
,
R.
,
2005
, “
Dynamic Systems Identification With Gaussian Processes
,”
Math. Comput. Modell. Dyn. Syst.
,
11
(
4
), pp.
411
424
.
2.
Ažman
,
K.
, and
Kocijan
,
J.
,
2011
, “
Dynamical Systems Identification Using Gaussian Process Models With Incorporated Local Models
,”
Eng. Appl. Artif. Intell.
,
24
(
2
), pp.
398
408
.
3.
Worden
,
K.
,
Becker
,
W. E.
,
Rogers
,
T. J.
, and
Cross
,
E. J.
,
2018
, “
On the Confidence Bounds of Gaussian Process NARX Models and Their Higher-Order Frequency Response Functions
,”
Mech. Syst. Signal. Process.
,
104
, pp.
188
223
.
4.
Worden
,
K.
, and
Green
,
P.
,
2017
, “
A Machine Learning Approach to Nonlinear Modal Analysis
,”
Mech. Syst. Signal. Process.
,
84
, pp.
34
53
.
5.
Worden
,
K.
, and
Cross
,
E. J.
,
2018
, “
On Switching Response Surface Models, With Applications to the Structural Health Monitoring of Bridges
,”
Mech. Syst. Signal. Process.
,
98
, pp.
139
156
.
6.
Villani
,
L. G.
,
da Silva
,
S.
, and
Cunha
,
A.
,
2019
, “
Damage Detection in Uncertain Nonlinear Systems Based on Stochastic Volterra Series
,”
Mech. Syst. Signal. Process.
,
125
(
1851
), pp.
288
310
.
7.
Villani
,
L. G.
,
da Silva
,
S.
,
Cunha
,
A.
, and
Todd
,
M. D.
,
2019
, “
Damage Detection in An Uncertain Nonlinear Beam Based on Stochastic Volterra Series: An Experimental Application
,”
Mech. Syst. Signal. Process.
,
128
(
10
), pp.
463
478
.
8.
Rébillat
,
M.
,
Hmad
,
O.
,
Kadri
,
F.
, and
Mechbal
,
N.
,
2017
, “
Peaks Over Threshold-Based Detector Design for Structural Health Monitoring: Application to Aerospace Structures
,”
Struct. Health. Monit.
,
17
(
1
), pp.
91
107
.
9.
Poulimenos
,
A. G.
, and
Sakellariou
,
J. S.
,
2019
, “
A Transmittance-Based Methodology for Damage Detection Under Uncertainty: An Application to a Set of Composite Beams With Manufacturing Variability Subject to Impact Damage and Varying Operating Conditions
,”
Struct. Health. Monit.
,
18
(
1
), pp.
318
333
.
10.
Figueiredo
,
E.
,
Radu
,
L.
,
Worden
,
K.
, and
Farrar
,
C. R.
,
2014
, “
A Bayesian Approach Based on a Markov-Chain Monte Carlo Method for Damage Detection Under Unknown Sources of Variability
,”
Eng. Struct.
,
80
(
1778
), pp.
1
10
.
11.
Liu
,
Z.
,
Liu
,
X.
,
Zhu
,
S.-P.
,
Zhu
,
P.
,
Liu
,
W.
,
Correia
,
J. A.
, and
De Jesus
,
A. M.
,
2020
, “
Reliability Assessment of Measurement Accuracy for Fbg Sensors Used in Structural Tests of the Wind Turbine Blades Based on Strain Transfer Laws
,”
Eng. Failure Anal.
,
112
(
2
), p.
104506
.
12.
Seventekidis
,
P.
,
Giagopoulos
,
D.
,
Arailopoulos
,
A.
, and
Markogiannaki
,
O.
,
2020
, “
Structural Health Monitoring Using Deep Learning With Optimal Finite Element Model Generated Data
,”
Mech. Syst. Signal. Process.
,
145
(
5
), p.
106972
.
13.
da Silva
,
S.
,
Paixão
,
J. A. S.
,
Rébillat
,
M.
, and
Mechbal
,
N.
,
2019
, “
Data-Driven Autoregressive Model Identification for Structural Health Monitoring in Anisotropic Composite Plates
,” IX ECCOMAS Thematic Conference on Smart Structures and Materials - SMART 2019,
N. M.
Ayech Benjeddou
and
J.-F.
Deü
, eds., International Centre for Numerical Methods in Engineering (CIMNE), Artes Gráficas Torres S.L, pp.
1213
1223
.
14.
Nardi
,
D.
,
Lampani
,
L.
,
Pasquali
,
M.
, and
Gaudenzi
,
P.
,
2016
, “
Detection of Low-Velocity Impact-Induced Delaminations in Composite Laminates Using Auto-Regressive Models
,”
Compos. Struct.
,
151
(
427
), pp.
108
113
.
15.
da Silva
,
S.
,
2018
, “
Data-driven Model Identification of Guided Wave Propagation in Composite Structures
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
40
(
11
), p.
208
.
16.
Mechbal
,
N.
, and
Rebillat
,
M.
,
2017
, “
Damage Indexes Comparison for the Structural Health Monitoring of a Stiffened Composite Plate
,”
8th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2017)
,
A.
Güemes
,
A.
Benjeddou
,
J.
Rodellar
, and
J.
Leng
, eds., pp.
436
444
.
17.
Cross
,
E. J.
,
Manson
,
G.
,
Worden
,
K.
, and
Pierce
,
S. G.
,
2012
, “
Features for Damage Detection With Insensitivity to Environmental and Operational Variations
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
468
(
2148
), pp.
4098
4122
.
18.
Deraemaeker
,
A.
, and
Worden
,
K.
,
2018
, “
A Comparison of Linear Approaches to Filter Out Environmental Effects in Structural Health Monitoring
,”
Mech. Syst. Signal. Process.
,
105
(
2
), pp.
1
15
.
19.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
(
Massachusetts Institute of Technology
),
MIT Press
,
Cambridge, MA
.
20.
Mattos
,
C. L. C.
,
Damianou
,
A.
,
Barreto
,
G. A.
, and
Lawrence
,
N. D.
,
2016
, “
Latent Autoregressive Gaussian Processes Models for Robust System Identification
,”
IFAC-PapersOnLine
,
49
(
7
), pp.
1121
1126
,
11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016
.
21.
Mujica
,
L. E.
,
Gharibnezhad
,
F.
,
Rodellar
,
J.
, and
Todd
,
M.
,
2020
, “
Considering Temperature Effect on Robust Principal Component Analysis Orthogonal Distance as a Damage Detector
,”
Struct. Health. Monit.
,
19
(
3
), pp.
781
795
.
22.
Sohn
,
H.
,
Czarnecki
,
J. A.
, and
Farrar
,
C. R.
,
2000
, “
Structural Health Monitoring Using Statistical Process Control
,”
J. Struct. Eng.
,
126
(
11
), pp.
1356
1363
.
You do not currently have access to this content.