Abstract

Three-point bending fatigue compliance datasets of multi-layer fiberglass-weave/epoxy test specimens, including 5 and 10 mil interlayers, were analyzed using artificial intelligence (AI) methods along with statistical analysis, revealing the existence of three different compliance-based damage modes. Anomaly detection algorithms helped discover damage indicators observable in short intervals (of 50 cycles) in the compliance data, whose patterns vary with the material and the number of load cycles to which the material is subjected. Machine learning algorithms were applied using the compliance features to assess the likelihood that material failure may occur within a certain number of future loading cycles. High accuracy, precision, and recall rates were achieved in the classification task, for which we evaluated several algorithms, including various variations of neural networks and support vector machines. Thus, our work demonstrates the utility of AI algorithms for discovering a diversity of damage mechanisms and failures.

References

1.
Mehrotra
,
K.
,
Mohan
,
C. K.
, and
Ranka
,
S.
,
1996
,
Elements of Artificial Neural Networks
, Vol.
10
,
MIT Press
,
Cambridge, MA
.
2.
Feng
,
S. Z.
,
Han
,
X.
,
Ma
,
Z. J.
,
Królczyk
,
G.
, and
Li
,
Z. X.
,
2020
, “
Data-Driven Algorithm for Real-Time Fatigue Life Prediction of Structures With Stochastic Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
372
(
15
), p.
113373
.
3.
Kim
,
S.
,
Kim
,
N. H.
, and
Choi
,
J. H.
,
2020
, “
Prediction of Remaining Useful Life by Data Augmentation Technique Based on Dynamic Time Warping
,”
Mech. Syst. Signal Process.
,
136
(
2
), p.
106486
.
4.
Mortazavi
,
S. N.
, and
Ince
,
A.
,
2020
, “
An Artificial Neural Network Modeling Approach for Short and Long Fatigue Crack Propagation
,”
Comput. Mater. Sci.
,
185
(
15
), p.
109962
.
5.
Tan
,
Z. X.
,
Thambiratnam
,
D. P.
,
Chan
,
T. H.
, and
Abdul Razak
,
H.
,
2017
, “
Detecting Damage in Steel Beams Using Modal Strain Energy Based Damage Index and Artificial Neural Network
,”
Eng. Failure Analy.
,
79
(
9
), pp.
253
262
.
6.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
7.
Choe
,
D.-E.
,
Kim
,
H.-C.
, and
Kim
,
M.-H.
,
2021
, “
Sequence-Based Modeling of Deep Learning With LSTM and GRU Networks for Structural Damage Detection of Floating Offshore Wind Turbine Blades
,”
Renew. Energy
,
174
(
12
), pp.
218
235
.
8.
Zhou
,
D.
,
Zhuang
,
X.
, and
Zuo
,
H.
,
2021
, “
A Hybrid Deep Neural Network Based on Multi-Time Window Convolutional Bidirectional LSTM for Civil Aircraft APU Hazard Identification
,”
Chin. J. Aeronaut.
,
34
(
9
), p.
1
18
.
9.
Bao
,
X.
,
Wang
,
Z.
, and
Iglesias
,
G.
,
2021
, “
Damage Detection for Offshore Structures Using Long and Short-Term Memory Networks and Random Decrement Technique
,”
Ocean Eng.
,
235
(
17
), p.
109388
.
10.
Yan
,
H.
,
Qin
,
Y.
,
Xiang
,
S.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Long-Term Gear Life Prediction Based on Ordered Neurons LSTM Neural Networks
,”
Measurement: J. Int. Measure. Confederation
,
165
(
17
), p.
108205
.
11.
Li
,
D.
,
Zhang
,
J.
,
Zhang
,
Q.
, and
Wei
,
X.
,
2017
, “
Classification of ECG Signals Based on 1D Convolution Neural Network
,”
2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)
,
Dalian, China
,
Oct. 12–15
, pp.
1
6
.
12.
Viola
,
J.
,
Chen
,
Y. Q.
, and
Wang
,
J.
,
2019
, “
FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN) Based Ball-Bearing Failure Detection Method
,”
1st International Conference on Industrial Artificial Intelligence (IAI)
,
Shenyang, China
,
July 23
.
13.
Wang
,
X.
,
Zhang
,
X.
, and
Shahzad
,
M. M.
,
2021
, “
A Novel Structural Damage Identification Scheme Based on Deep Learning Framework
,”
Structures
,
29
(
1
), pp.
1537
1549
.
14.
Guo
,
J.
,
Liu
,
C.
,
Cao
,
J.
, and
Jiang
,
D.
,
2021
, “
Damage Identification of Wind Turbine Blades With Deep Convolutional Neural Networks
,”
Renew. Energy
,
174
(
12
), pp.
122
133
.
15.
Cha
,
Y. J.
,
Choi
,
W.
, and
Büyüköztürk
,
O.
,
2017
, “
Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
,”
Computer-Aided Civil Infrastructure Eng.
,
32
(
5
), pp.
361
378
.
16.
Bao
,
Y.
,
Tang
,
Z.
,
Li
,
H.
, and
Zhang
,
Y.
,
2019
, “
Computer Vision and Deep Learning–Based Data Anomaly Detection Method for Structural Health Monitoring
,”
Struct. Health Monitor.
,
18
(
2
), pp.
401
421
.
17.
Khatir
,
S.
,
Tiachacht
,
S.
,
Le Thanh
,
C.
,
Ghandourah
,
E.
,
Mirjalili
,
S.
, and
Abdel Wahab
,
M.
,
2021
, “
An Improved Artificial Neural Network Using Arithmetic Optimization Algorithm for Damage Assessment in FGM Composite Plates
,”
Compos. Struct.
,
273
(
19
), p.
114287
.
18.
Tran-Ngoc
,
H.
,
Khatir
,
S.
,
De Roeck
,
G.
,
Bui-Tien
,
T.
, and
Abdel Wahab
,
M.
,
2019
, “
An Efficient Artificial Neural Network for Damage Detection in Bridges and Beam-Like Structures by Improving Training Parameters Using Cuckoo Search Algorithm
,”
Eng. Struct.
,
199
(
22
), p.
109637
.
19.
Zenzen
,
R.
,
Khatir
,
S.
,
Belaidi
,
I.
,
Le Thanh
,
C.
, and
Abdel Wahab
,
M.
,
2020
, “
A Modified Transmissibility Indicator and Artificial Neural Network for Damage Identification and Quantification in Laminated Composite Structures
,”
Compos. Struct.
,
248
(
18
), p.
112497
.
20.
Lin
,
Y.-z.
,
Nie
,
Z.-h.
, and
Ma
,
H.-w.
,
2017
, “
Structural Damage Detection With Automatic Feature-Extraction Through Deep Learning
,”
Computer-Aided Civil Infrastruct. Eng.
,
32
(
12
), pp.
1025
1046
.
21.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound Vib.
,
388
(
3
), pp.
154
170
.
22.
Cantero-Chinchilla
,
S.
,
Malik
,
M. K.
,
Chronopoulos
,
D.
, and
Chiachío
,
J.
,
2021
, “
Bayesian Damage Localization and Identification Based on a Transient Wave Propagation Model for Composite Beam Structures
,”
Compos. Struct.
,
267
(
13
), p.
113849
.
23.
O’Dowd
,
N. M.
,
Madarshahian
,
R.
,
Leung
,
M. S. H.
,
Corcoran
,
J.
, and
Todd
,
M. D.
,
2021
, “
A Probabilistic Estimation Approach for the Failure Forecast Method Using Bayesian Inference
,”
Int. J. Fatigue
,
142
(
1
), p.
105943
.
24.
Yan
,
W.-J.
,
Chronopoulos
,
D.
,
Papadimitriou
,
C.
,
Cantero-Chinchilla
,
S.
, and
Zhu
,
G.-S.
,
2020
, “
Bayesian Inference for Damage Identification Based on Analytical Probabilistic Model of Scattering Coefficient Estimators and Ultrafast Wave Scattering Simulation Scheme
,”
J. Sound Vib.
,
468
(
5
), p.
115083
.
25.
Ritto
,
T.
, and
Rochinha
,
F.
,
2021
, “
Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mech. Syst. Signal Process.
,
155
(
10
), p.
107614
.
26.
Rautela
,
M.
,
Senthilnath
,
J.
,
Moll
,
J.
, and
Gopalakrishnan
,
S.
,
2021
, “
Combined Two-Level Damage Identification Strategy Using Ultrasonic Guided Waves and Physical Knowledge Assisted Machine Learning
,”
Ultrasonics
,
115
(
7
), p.
106451
.
27.
Farhan Khan
,
M.
,
Alam
,
A.
,
Ateeb Siddiqui
,
M.
,
Saad Alam
,
M.
,
Rafat
,
Y.
,
Salik
,
N.
, and
Al-Saidan
,
I.
,
2020
, “
Real-Time Defect Detection in 3D Printing Using Machine Learning
,”
Second International Conference on Recent Advances in Materials and Manufacturing
,
Tamil Nadu, India
,
Nov. 20–21
.
28.
Dhiraj
,
A.
,
Meruane
,
V.
, and
Sangwan
,
K.
,
2021
, “
Development of a Machine Learning Based Model for Damage Detection, Localization and Quantification to Extend Structure Life
,”
The 28th CIRP Conference on Life Cycle Engineering
,
Jaipur, India
,
Mar. 10–12
.
29.
Zhan
,
Y.
,
Lu
,
S.
,
Xiang
,
T.
, and
Wei
,
T.
,
2021
, “
Application of Convolutional Neural Network in Random Structural Damage Identification
,”
Structures
,
29
(
1
), pp.
570
576
.
30.
Agrawal
,
A.
, and
Choudhary
,
A.
,
2018
, “
An Online Tool for Predicting Fatigue Strength of Steel Alloys Based on Ensemble Data Mining
,”
Int. J. Fatigue
,
113
(
8
), pp.
389
400
.
31.
Wang
,
W.
,
Moreau
,
N. G.
,
Yuan
,
Y.
,
Race
,
P. R.
, and
Pang
,
W.
,
2019
, “
Towards Machine Learning Approaches for Predicting the Self-Healing Efficiency of Materials
,”
Comput. Mater. Sci.
,
168
(
13
), pp.
180
187
.
32.
Hou
,
M.
,
Pi
,
D.
, and
Li
,
B.
,
2020
, “
Similarity-Based Deep Learning Approach for Remaining Useful Life Prediction
,”
Measurement: J. Int. Measure. Confederation
,
159
(
11
), p.
107788
.
33.
Xiang
,
L.
,
Wang
,
P.
,
Yang
,
X.
,
Hu
,
A.
, and
Su
,
H.
,
2021
, “
Fault Detection of Wind Turbine Based on Scada Data Analysis Using CNN and LSTM With Attention Mechanism
,”
Measurement
,
175
(
6
), p.
109094
.
34.
Rautela
,
M.
, and
Gopalakrishnan
,
S.
,
2021
, “
Ultrasonic Guided Wave Based Structural Damage Detection and Localization Using Model Assisted Convolutional and Recurrent Neural Networks
,”
Expert Syst. Appl.
,
167
(
5
), p.
114189
.
35.
Aria
,
A.
,
Lopez Droguett
,
E.
,
Azarm
,
S.
, and
Modarres
,
M.
,
2020
, “
Estimating Damage Size and Remaining Useful Life in Degraded Structures Using Deep Learning-Based Multi-Source Data Fusion
,”
Struct. Health Monit.
,
19
(
5
), pp.
1542
1559
.
36.
An
,
Q.
,
Tao
,
Z.
,
Xu
,
X.
,
El Mansori
,
M.
, and
Chen
,
M.
,
2020
, “
A Data-Driven Model for Milling Tool Remaining Useful Life Prediction With Convolutional and Stacked LSTM Network
,”
Measurement: J. Int. Measure. Confederation
,
154
(
6
), p.
107461
.
37.
Schwarzer
,
M.
,
Rogan
,
B.
,
Ruan
,
Y.
,
Song
,
Z.
,
Lee
,
D. Y.
,
Percus
,
A. G.
,
Chau
,
V. T.
,
Moore
,
B. A.
,
Rougier
,
E.
,
Viswanathan
,
H. S.
, and
Srinivasan
,
G.
,
2019
, “
Learning to Fail: Predicting Fracture Evolution in Brittle Material Models Using Recurrent Graph Convolutional Neural Networks
,”
Comput. Mater. Sci.
,
162
(
7
), pp.
322
332
.
38.
Dackermann
,
U.
,
Li
,
J.
, and
Samali
,
B.
,
2010
, “
Dynamic-Based Damage Identification Using Neural Network Ensembles and Damage Index Method
,”
Adv. Struct. Eng.
,
13
(
6
), pp.
1001
1016
.
39.
Weiss
,
V.
, and
Ghoshal
,
A.
,
2014
, “
On the Search for Optimal Damage Precursors
,”
Struct. Health Monit.
,
13
(
6
), pp.
601
608
.
40.
Haynes
,
R. A.
,
Boyd
,
S. E.
, and
Lawrence
,
B. D.
,
2017
,
Army Research Laboratory Technical Report No. 8022, May 2017
.
41.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
You do not currently have access to this content.