Abstract

A guided wave-based structural health monitoring (GW-SHM) system aims at determining the integrity of a wide variety of plate-like structures such as aircraft fuselages, pipes, and fuel tanks. It is often based on a sparse grid of piezoelectric transducers for exciting and sensing GWs that under certain conditions interact with damage while propagating. In recent years, various defect imaging algorithms have been proposed for processing GWs signals and, particularly, for computing an image representing the integrity of the studied structure. The performance of the GW-SHM system highly depends on a signal processing methodology. This paper compares defect localization accuracy of the three state-of-art defect imaging algorithms (delay-and-sum, minimum variance, and excitelet) applied to an extensive simulated database of GWs propagation and GWs-defect interaction in aluminum plate under varying temperature and transducers degradation. This study is conducted in order to provide statistical inferences, essential for SHM system performance demonstration.

References

1.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
. 10.1016/j.jsv.2006.01.020
2.
Diamanti
,
K.
, and
Soutis
,
C.
,
2010
, “
Structural Health Monitoring Techniques for Aircraft Composite Structures
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
342
352
. 10.1016/j.paerosci.2010.05.001
3.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hunter
,
N. F.
, and
Worden
,
K.
,
2001
, “
Structural Health Monitoring Using Statistical Pattern Recognition Techniques
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
4
), pp.
706
711
. 10.1115/1.1410933
4.
Giurgiutiu
,
V.
,
2007
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,
Elsevier Academic Press
.
5.
Farrar
,
C. R.
, and
Worden
,
K.
,
2012
,
Structural Health Monitoring: A Machine Learning Perspective
,
John Wiley & Sons
.
6.
Kulakovskyi
,
A.
,
Chapuis
,
B.
,
Mesnil
,
O.
,
Bedreddine
,
N.-R.
, and
Lhémery
,
A.
,
2017
, “
Defect Imaging on CFRP and Honeycomb Composite Structures by Guided Waves Generated and Detected by a Sparse PZT Array
,”
IWSHM
,
Stanford, CA
.
7.
Chapuis
,
B.
,
Terrien
,
N.
, and
Royer
,
D.
,
2010
, “
Excitation and Focusing of Lamb Waves in a Multilayered Anisotropic Plate
,”
J. Acoust. Soc. Am.
,
127
(
198
), pp.
198
203
. 10.1121/1.3263607
8.
Cawley
,
P.
,
2018
, “
Structural Health Monitoring: Closing the Gap Between Research and Industrial Deployment
,”
Struct. Health Monit.
,
17
(
5
), pp.
1225
1244
. 10.1177/1475921717750047
9.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2007
, “
Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates
,”
Wave Motion
,
44
(
6
), pp.
482
492
. 10.1016/j.wavemoti.2007.02.008
10.
Su
,
Z.
,
Cheng
,
L.
,
Wang
,
X.
,
Yu
,
L.
, and
Zhou
,
C.
,
2009
, “
Predicting Delamination of Composite Laminates Using an Imaging Approach
,”
Smart Mater. Struct.
,
18
(
7
), p.
074002
. 10.1088/0964-1726/18/7/074002
11.
Qiu
,
L.
,
Yuan
,
S.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2011
, “
A Time Reversal Focusing Based Impact Imaging Method and Its Evaluation on Complex Composite Structures
,”
Smart Mater. Struct.
,
20
(
10
), p.
105014
. 10.1088/0964-1726/20/10/105014
12.
Hall
,
J. S.
, and
Michaels
,
J. E.
,
2015
, “
Multipath Ultrasonic Guided Wave Imaging in Complex Structures
,”
Struct. Health Monit.
,
14
(
4
), pp.
345
358
. 10.1177/1475921715578316
13.
Qiu
,
L.
,
Liu
,
M.
,
Qing
,
X.
, and
Yuan
,
S.
,
2013
, “
A Quantitative Multidamage Monitoring Method for Large-Scale Complex Composite
,”
Struct. Health Monit.
,
12
(
3
), pp.
183
196
. 10.1177/1475921713479643
14.
Michaels
,
J. E.
,
2008
, “
Detection, Localization and Characterization of Damage in Plates With an In Situ Array of Spatially Distributed Ultrasonic Sensors
,”
Smart Mater. Struct.
,
17
, p.
035
. 10.1088/0964-1726/17/3/035035
15.
Hall
,
J. S.
,
2010
, “
Minimum Variance Ultrasonic Imaging Applied to an In Situ Sparse Guided Wave Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
10
), pp.
2311
2323
. 10.1109/TUFFC.2010.1692
16.
Quaegebeur
,
N.
,
Masson
,
P.
,
Langlois-Demers
,
D.
, and
Micheau
,
P.
,
2011
, “
Dispersion-Based Imaging for Structural Health Monitoring Using Sparse and Compact Arrays
,”
Smart Mater. Struct.
,
20
, pp.
025
005
. 10.1088/0964-1726/20/2/025005
17.
Sharif-Khodaei
,
Z.
, and
Aliabadi
,
M. H.
,
2014
, “
Assessment of Delay-and-Sum Algorithms for Damage Detection in Aluminium and Composite Plates
,”
Smart Mater. Struct.
,
23
, p.
075007
. 10.1088/0964-1726/23/7/075007
18.
Aldrin
,
J. C.
,
Medina
,
E. A.
,
Lingren
,
E. A.
,
Buynak
,
C. F.
, and
Knopp
,
J. S.
,
2011
, “Protocol for Reliability Assessment of Structural Health Monitoring Systems Incorporating Model-Assisted Probability of Detection (mapod) Approach,” Technical Report, DTIC Document.
19.
Kessler
,
S. S.
,
Flynn
,
E. B.
,
Dunn
,
C. T.
, and
Todd
,
M. D.
,
2011
, “
A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics
,”
Annual Conference of the Prognostics and Health Management Society
,
Montreal, Quebec
,
Sept. 25–29
.
20.
Etebu
,
E.
, and
Shafiee
,
M.
,
2018
, “
Reliability Analysis of Structural Health Monitoring Systems
,”
ESREL 2018
,
Trondheim, Norway
,
June 17–21
.
21.
Schubert-Kabban
,
C. M.
,
Greenwell
,
B. M.
,
DeSimio
,
M. P.
, and
Derriso
,
M. M.
,
2015
, “
The Probability of Detection for Structural Health Monitoring Systems: Repeated Measures Data
,”
Struct. Health Monit.
,
14
(
3
), pp.
252
264
. 10.1177/1475921714566530
22.
Moriot
,
J.
,
Quaegebeur
,
N.
,
Le Duff
,
A.
, and
Masson
,
P.
,
2016
, “
Characterization of the Robustness of SHM Imaging Techniques Using the Absolute Error of Localization
,”
8th European Workshop on Structural Health Monitoring
,
Bilbao, Spain
,
July
.
23.
Kulakovskyi
,
A.
,
Mesnil
,
O.
,
Chapuis
,
B.
, and
Lhémery
,
A.
,
2019
, “
High-Resolution Defect Imaging in Laminate Composites and Honeycomb Structures
,” AIP Conference Proceedings, Vol.
2102
,
AIP Publishing LLC
, p.
040008
.
24.
Kausel
,
E.
,
1986
, “
Wave Propagation in Anisotropic Layered Media
,”
Int. J. Numer Methods Eng.
,
23
(
8
), pp.
1567
1578
. 10.1002/nme.1620230811
25.
Hall
,
J. S.
, and
Michaels
,
J. E.
,
2011
, “
Computational Efficiency of Ultrasonic Guided Wave Imaging Algorithms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
1
), pp.
244
248
. 10.1109/TUFFC.2011.1792
26.
Quaegebeur
,
N.
,
Micheau
,
P.
,
Masson
,
P.
, and
Maslouhi
,
A.
,
2010
, “
Structural Health Monitoring Strategy for Detection of Interlaminar Delamination in Composite Plates
,”
Smart Mater. Struct.
,
19
. 10.1088/0964-1726/19/8/085005
27.
Zeng
,
L.
,
Zhaoa
,
M.
,
Lin
,
J.
, and
Wu
,
W.
,
2016
, “
Waveform Separation and Image Fusion for Lamb Waves Inspection Resolution Improvement
,”
NDT E Int.
,
79
(
79
), pp.
17
29
. 10.1016/j.ndteint.2015.11.006
28.
Willberg
,
C.
,
Duczek
,
S.
,
Vivar-Perez
,
J. M.
, and
Ahmad
,
Z. A. B.
,
2015
, “
Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review
,”
ASME Appl. Mech. Rev.
,
67
(
1
), p.
010803
. 10.1115/1.4029539
29.
Leckey
,
C.
,
Wheeler
,
K.
,
Hafiychuk
,
V. N.
,
Hafiychuk
,
H.
, and
Timucin
,
D.
,
2018
, “
Simulation of Guided-Wave Ultrasound Propagation in Composite Laminates: Benchmark Comparisons of Numerical Codes and Experiment
,”
Ultrasonics
,
84
(
84
), pp.
187
200
. 10.1016/j.ultras.2017.11.002
30.
Imperiale
,
A.
, and
Demaldent
,
E.
,
2019
, “
A Macro-Element Strategy Based Upon Spectral Finite Elements and Mortar Elements for Transient Wave Propagation Modeling. Application to Ultrasonic Testing of Laminate Composite Materials
,”
Int. J. Numer Methods Eng.
,
17
(
10
), pp.
964
990
. 10.1002/nme.6080
31.
Cohen
,
G.
,
2002
,
Higher-Order Numerical Methods for Transient Wave Equations
,
Springer Scientific Computation
.
32.
Mesnil
,
O.
,
Imperiale
,
A.
,
Demaldent
,
E.
, and
Chapuis
,
B.
,
2019
, “
Validation of Spectral Finite Element Simulation Tools Dedicated to Structural Health Monitoring
,”
AIP. Conf. Proc.
,
2102
, pp.
050018
.
33.
Chaabene
,
S.
,
Bouchoucha
,
F.
,
Ichchou
,
M. N.
, and
Haddar
,
M.
,
2015
, “
Wave Mode Diffusion and Propagation in Structural Wave Guide Under Varying Temperature
,”
Appl. Acoust.
,
108
, pp.
84
91
. 10.1016/j.apacoust.2015.09.014
34.
Miorelli
,
R.
,
Kulakovskyi
,
A.
,
Mesnil
,
O.
, and
Chapuis
,
B.
, “Supervised Learning Strategy for Classification and Regression Tasks Applied to Aeronautical Structural Health Monitoring Problems,” under review.
35.
Le Bourdais
,
F.
, and
Mesnil
,
O.
,
2019
, “
Machine-Learning Based Temperature Compensation for Guided Wave Imaging in Structural Health Monitoring
,” Proceedings of the 11th International Symposium on NDT in Aerospace,
Paris-Saclay
, Nov. 13–15.
36.
Fribourg-Blanc
,
E.
,
2003
, “
Thin Film Actuators for Structural Heath Monitoring : Study of PZT and PMNT Films
,” PhD thesis,
University of Valenciennes
,
Valenciennes
.
37.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Int. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
. 10.1177/1045389X05050106
38.
Moriot
,
J.
,
Quaegebeur
,
N.
,
Duff
,
A. L.
, and
Masson
,
P.
,
2017
, “
A Model-Based Approach for Statistical Assessment of Detection and Localization Performance of Guided Wave-Based Imaging Techniques
,”
Struct. Health Monit.
,
17
(
6
), pp.
1460
1472
. 10.1177/1475921717744679
39.
Chen
,
Y.-C.
,
2017
, “
A Tutorial on Kernel Density Estimation and Recent Advances
,”
Biostat. Epidemiol.
,
1
(
1
), pp.
161
187
. 10.1080/24709360.2017.1396742
40.
Raschka
,
S.
, and
Mirjalili
,
V.
,
2019
,
Python Machine Learning
, 3rd ed.,
Packt Publishing
,
Birmingham
.
You do not currently have access to this content.