Abstract

Recently published experimental works on remotely bonded fiber Bragg grating (FBG) ultrasound (US) sensors show that they display some unique characteristics that are not observed with directly bonded FBG sensors. These studies suggest that the bonding of the optical fiber strongly influences how the ultrasound waves are coupled from the structure to the FBG sensor. In this paper, the analytical model of the structure-adhesive-optical fiber section, treated as an ultrasound coupler, is derived and analyzed to explain the observed experimental phenomena. The resulting dispersion curve shows that the ultrasound coupler possesses a cutoff frequency, above which a dispersive longitudinal mode exists. The low propagation speed of the dispersive longitudinal mode leads to multiple resonances at and above the cutoff frequency. To characterize the resonant characteristics of the ultrasound coupler, a semi-analytical model is implemented and the scattering parameters (S-parameters) are introduced for broadband time-frequency analysis. The simulation was able to reproduce the experiment observations reported by other researchers. Furthuremore, the behaviors of the remotely bonded FBG sensors can be explained based on its resonant characteristics.

References

References
1.
Perez
,
I.
,
DiUlio
,
M.
,
Maley
,
S.
, and
Phan
,
N.
,
2010
, “
Structural Health Management in the Navy
,”
Struct. Heal. Monit.
,
9
(
3
), pp.
199
207
. 10.1177/1475921710366498
2.
Yuan
,
F. G.
,
2016
,
Structural Health Monitoring (SHM) in Aerospace Structures
,
Woodhead Publishing, Cambridge
,
MA
.
3.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
303
315
.
4.
Chang
,
F.-K.
,
2016
,
Structural Health Monitoring 2013, Volume 1 and 2—A Roadmap to Intelligent Structures
,
DEStech Publications
,
Stanford, CA
.
5.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
. 10.1177/1045389X05050106
6.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
114
. 10.1177/0583102406075428
7.
López-Higuera
,
J. M.
,
Cobo
,
L. R.
,
Incera
,
A. Q.
, and
Cobo
,
A.
,
2011
, “
Fiber Optic Sensors in Structural Health Monitoring
,”
J. Light. Technol.
,
29
(
4
), pp.
587
608
. 10.1109/JLT.2011.2106479
8.
Chan
,
T. H. T.
,
Yu
,
L.
,
Tam
,
H. Y.
,
Ni
,
Y. Q.
,
Liu
,
S. Y.
,
Chung
,
W. H.
, and
Cheng
,
L. K.
,
2006
, “
Fiber Bragg Grating Sensors for Structural Health Monitoring of Tsing Ma Bridge: Background and Experimental Observation
,”
Eng. Struct.
,
28
(
5
), pp.
648
659
. 10.1016/j.engstruct.2005.09.018
9.
Guo
,
H.
,
Xiao
,
G.
,
Mrad
,
N.
, and
Yao
,
J.
,
2011
, “
Fiber Optic Sensors for Structural Health Monitoring of Air Platforms
,”
Sensors
,
11
(
4
), pp.
3687
3705
. 10.3390/s110403687
10.
Kahandawa
,
G. C.
,
Epaarachchi
,
J.
,
Wang
,
H.
, and
Lau
,
K. T.
,
2012
, “
Use of FBG Sensors for SHM in Aerospace Structures
,”
Photonic Sens.
,
2
(
3
), pp.
203
214
. 10.1007/s13320-012-0065-4
11.
Majumder
,
M.
,
Gangopadhyay
,
T. K.
,
Chakraborty
,
A. K.
,
Dasgupta
,
K.
, and
Bhattacharya
,
D. K.
,
2008
, “
Fibre Bragg Gratings in Structural Health Monitoring—Present Status and Applications
,”
Sens. Actuators, A
,
147
(
1
), pp.
150
164
. 10.1016/j.sna.2008.04.008
12.
Todd
,
M. D.
,
Nichols
,
J. M.
,
Trickey
,
S. T.
,
Seaver
,
M.
,
Nichols
,
C. J.
, and
Virgin
,
L. N.
,
2007
, “
Bragg Grating-Based Fibre Optic Sensors in Structural Health Monitoring
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
317
343
. 10.1098/rsta.2006.1937
13.
Yun-Jiang
,
R.
, and
Rao
,
Y. J.
,
1997
, “
In-Fibre Bragg Grating Sensors
,”
Meas. Sci. Technol.
,
8
(
4
), pp.
355
375
. 10.1088/0957-0233/8/4/002
14.
Jen
,
C. K.
,
1985
, “
Similarities and Differences Between Fiber Acoustics and Fiber Optics
,”
IEEE Ultrasonics Symposium
,
San Francisco, CA
,
Oct. 16–18
, pp.
1128
1133
.
15.
Mbamou
,
D. N.
,
Helfmann
,
J.
,
Muller
,
G.
,
Brunk
,
G.
,
Stein
,
T.
, and
Desinger
,
K.
,
2001
, “
A Theoretical Study on the Combined Application of Fibres for Optical and Acoustic Waveguides
,”
Meas. Sci. Technol.
,
12
(
10
), pp.
1631
1640
. 10.1088/0957-0233/12/10/303
16.
Shibata
,
N.
,
Azuma
,
Y.
,
Horiguchi
,
T.
, and
Tateda
,
M.
,
1988
, “
Identification of Longitudinal Acoustic Modes Guided in the Core Region of a Single-Mode Optical Fiber by Brillouin Gain Spectra Measurements
,”
Opt. Lett.
,
13
(
7
), p.
595
. 10.1364/OL.13.000595
17.
Safaai-Jazi
,
A.
,
Jen
,
C. K.
, and
Farnell
,
G. W.
,
1986
, “
Analysis of Weakly Guiding Fiber Acoustic Waveguide
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
33
(
1
), pp.
59
68
. 10.1109/T-UFFC.1986.26797
18.
Lee
,
J. R.
, and
Tsuda
,
H.
,
2006
, “
Sensor Application of Fibre Ultrasonic Waveguide
,”
Meas. Sci. Technol.
,
17
(
4
), pp.
645
652
. 10.1088/0957-0233/17/4/006
19.
Lim
,
S. H.
,
Oh
,
I. K.
, and
Lee
,
J. R.
,
2009
, “
Ultrasonic Active Fiber Sensor Based on Pulse-Echo Method
,”
J. Intell. Mater. Syst. Struct.
,
20
(
9
), pp.
1035
1043
. 10.1177/1045389X08098769
20.
Fukuma
,
N.
,
Kubota
,
K.
,
Nakamura
,
K.
, and
Ueha
,
S.
,
2006
, “
An Interrogator for Fibre Bragg Grating Sensors Using an Ultrasonically Induced Long-Period Optical Fibre Grating
,”
Meas. Sci. Technol.
,
17
(
5
), pp.
1046
1051
. 10.1088/0957-0233/17/5/S18
21.
Leal
,
W. A.
,
Carneiro
,
M. B. R.
,
Freitas
,
T. A. M. G.
,
Marcondes
,
C. B.
, and
Ribeiro
,
R. M.
,
2018
, “
Low-Frequency Detection of Acoustic Signals Using Fiber as an Ultrasonic Guide With a Distant in-Fiber Bragg Grating
,”
Microw. Opt. Technol. Lett.
,
60
(
4
), pp.
813
817
. 10.1002/mop.31061
22.
Quero
,
G.
,
Crescitelli
,
A.
,
Consales
,
M.
,
Pisco
,
M.
,
Cutolo
,
A.
,
Galdi
,
V.
, and
Cusano
,
A.
,
2012
, “
Resonant Hydrophones Based on Coated Fiber Bragg Gratings
,”
J. Light. Technol.
,
30
(
15
), pp.
2472
2481
. 10.1109/jlt.2012.2200233
23.
Atkinson
,
D.
, and
Hayward
,
G.
,
2001
, “
The Generation and Detection of Longitudinal Guided Waves in Thin Fibers Using a Conical Transformer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
48
(
4
), pp.
1046
1053
. 10.1109/58.935721
24.
Shah
,
H.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2017
, “
In-Situ Process- and Online Structural Health-Monitoring of Composites Using Embedded Acoustic Waveguide Sensors
,”
J. Phys. Commun.
,
1
(
5
), p.
055004
. 10.1088/2399-6528/aa8bfa
25.
Atkinson
,
D.
, and
Hayward
,
G.
,
1998
, “
Fibre Waveguide Transducers for Lamb Wave NDE
,”
IEE Proc. Sci. Meas. Technol.
,
145
(
5
), pp.
260
268
. 10.1049/ip-smt:19982214
26.
Neill
,
I. T.
,
Oppenheim
,
I. J.
, and
Greve
,
D. W.
,
2007
, “
A Wire-Guided Transducer for Acoustic Emission Sensing
,”
Proc. SPIE 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
, 652913, Apr. 18. http://dx.doi.org/10.1117/12.715358
27.
Vogt
,
T.
,
Lowe
,
M.
, and
Cawley
,
P.
,
2003
, “
Cure Monitoring Using Ultrasonic Guided Waves in Wires
,”
J. Acoust. Soc. Am.
,
114
(
3
), pp.
1303
1313
. 10.1121/1.1589751
28.
Tsuda
,
H.
,
Sato
,
E.
,
Nakajima
,
T.
,
Nakamura
,
H.
,
Arakawa
,
T.
,
Shiono
,
H.
,
Minato
,
M.
,
Kurabayashi
,
H.
, and
Sato
,
A.
,
2009
, “
Acoustic Emission Measurement Using a Strain-Insensitive Fiber Bragg Grating Sensor Under Varying Load Conditions
,”
Opt. Lett.
,
34
(
19
), p.
2942
. 10.1364/OL.34.002942
29.
Wee
,
J.
,
Wells
,
B.
,
Hackeny
,
D.
,
Bradford
,
P.
, and
Peters
,
K.
,
2016
, “
Increasing Signal Amplitude in Fiber Bragg Grating Detection of Lamb Waves Using Remote Bonding
,”
Appl. Opt.
,
55
(
21
), pp.
5564
5569
. 10.1364/AO.55.005564
30.
Davis
,
C.
,
Norman
,
P.
,
Rajic
,
N.
, and
Bernier
,
M.
,
2018
, “
Remote Sensing of Lamb Waves Using Optical Fibres—An Investigation of Modal Composition
,”
J. Light. Technol.
,
36
(
14
), pp.
2820
2826
. 10.1109/jlt.2018.2816563
31.
Wee
,
J.
,
Hackney
,
D.
,
Bradford
,
P.
, and
Peters
,
K.
,
2017
, “
Bi-Directional Ultrasonic Wave Coupling to FBGs in Continuously Bonded Optical Fiber Sensing
,”
Appl. Opt.
,
56
(
25
), pp.
7262
7268
. 10.1364/AO.56.007262
32.
Wee
,
J.
,
Hackney
,
D.
,
Bradford
,
P.
, and
Peters
,
K.
,
2018
, “
Experimental Study on Directionality of Ultrasonic Wave Coupling Using Surface-Bonded Fiber Bragg Grating Sensors
,”
J. Light. Technol.
,
36
(
4
), pp.
932
938
. 10.1109/JLT.2017.2769960
33.
Wee
,
J.
,
Hackney
,
D.
, and
Peters
,
K.
,
2019
, “
Preferential Directional Coupling to Ultrasonic Sensor Using Adhesive Tape
,”
Opt. Eng.
,
58
(
7
), p.
1
. 10.1117/1.OE.58.7.072003
34.
Wu
,
Q.
,
Yu
,
F.
,
Okabe
,
Y.
, and
Kobayashi
,
S.
,
2015
, “
Application of a Novel Optical Fiber Sensor to Detection of Acoustic Emissions by Various Damages in CFRP Laminates
,”
Smart Mater. Struct.
,
24
(
1
), p.
015011
. 10.1088/0964-1726/24/1/015011
35.
Yu
,
F.
,
Okabe
,
Y.
,
Wu
,
Q.
, and
Shigeta
,
N.
,
2016
, “
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement of Composites
,”
Smart Mater. Struct.
,
25
(
10
), p.
105033
. 10.1088/0964-1726/25/10/105033.
36.
Wee
,
J.
,
Hackney
,
D. A.
,
Bradford
,
P. D.
, and
Peters
,
K. J.
,
2017
, “
Simulating Increased Lamb Wave Detection Sensitivity of Surface Bonded Fiber Bragg Grating
,”
Smart Mater. Struct.
,
26
(
4
), p.
1016808
. 10.1088/1361-665x/aa646b
37.
Islam
,
M. M. M.
, and
Huang
,
H.
,
2014
, “
Understanding the Effects of Adhesive Layer on the Electromechanical Impedance (EMI) of Bonded Piezoelectric Wafer Transducer
,”
Smart Mater. Struct.
,
23
(
12
), p.
125037
. 10.1088/0964-1726/23/12/125037
38.
Islam
,
M. M. M.
, and
Huang
,
H.
,
2016
, “
Effects of Adhesive Thickness on the Lamb Wave Pitch-Catch Signal Using Bonded Peizoelectric Wafer Transducers
,”
Smart Mater. Struct.
,
25
(
8
), p.
085014
. 10.1088/0964-1726/25/8/085014
39.
Crawley
,
E. F.
,
De Luis
,
J.
, and
Luisj
,
J. D.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
(
10
), pp.
1373
1385
. 10.2514/3.9792
40.
Yan
,
W.
,
Lim
,
C. W.
,
Cai
,
J. B.
, and
Chen
,
W. Q.
,
2007
, “
An Electromechanical Impedance Approach for Quantitative Damage Detection in Timoshenko Beams With Piezoelectric Patches
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1390
1400
. 10.1088/0964-1726/16/4/054
41.
Rabinovitch
,
O.
, and
Vinson
,
J. R.
,
2002
, “
Adhesive Layer Effects in Surface-Mounted Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
13
(
11
), pp.
689
704
. 10.1177/1045389X02013011001
42.
M. M.
Sadek
,
1987
,
Industrial Applications of Adhesive Bonding
,
Springer, New York
,
New York
.
43.
Ha
,
S.
, and
Chang
,
F.-K.
,
2010
, “
Adhesive Interface Layer Effects in PZT-Induced Lamb Wave Propagation
,”
Smart Mater. Struct.
,
19
(
2
), p.
025006
. 10.1088/0964-1726/19/2/025006
44.
Rao
,
S. S.
,
2007
,
Vibration of Continuous System
,
John Willey and Sons, Inc.
,
New Jersey
.
45.
Pao
,
Y.-H.
,
Keh
,
D.-C.
, and
Howard
,
S. M.
,
1999
, “
Dynamic Response and Wave Propagation in Plane Trusses and Frames
,”
AIAA J.
,
37
(
5
), pp.
594
603
. 10.2514/2.778
46.
Howard
,
S. M.
, and
Pao
,
Y.-H.
,
1998
, “
Analysis and Experiments on Stress Waves in Planar Trusses
,”
J. Eng. Mech.
,
124
(
8
), pp.
884
891
. 10.1061/(ASCE)0733-9399(1998)124:8(884)
47.
Huang
,
H.
, and
Bednorz
,
T.
,
2014
, “
Introducing S-Parameters for Ultrasound-Based Structural Health Monitoring
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
11
), pp.
1856
1863
. 10.1109/TUFFC.2014.006556
48.
Zahedi
,
F.
, and
Huang
,
H.
,
2017
, “
Time–Frequency Analysis of Electro-Mechanical Impedance (EMI) Signature for Physics-Based Damage Detections Using Piezoelectric Wafer Active Sensor (PWAS)
,”
Smart Mater. Struct.
,
26
(
5
), p.
055010
. 10.1088/1361-665x/aa64c0
49.
Huang
,
H.
,
2020
, “
Resonances of Surface-Bonded Piezoelectric Wafer Active Transducers and Their Effects on the S0 Pitch-Catch Signal
,”
Proc. SPIE11379, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020, 113790I
, Apr. 23, p.
18
. http://dx.doi.org/10.1117/12.2559312
50.
Morvan
,
B.
,
Wilkie-Chancellier
,
N.
,
Duflo
,
H.
,
Tinel
,
A.
, and
Duclos
,
J.
,
2003
, “
Lamb Wave Reflection at the Free Edge of a Plate
,”
J. Acoust. Soc. Am.
,
113
(
3
), pp.
1417
1425
. 10.1121/1.1539521
51.
Auld
,
B. A.
, and
Tsao
,
E. M.
,
1977
, “
A Variational Analysis of Edge Resonance in a Semi-Infinite Plate
,”
IEEE Trans. Sonics Ultrason.
,
24
(
5
), pp.
317
326
. 10.1109/T-SU.1977.30952
52.
Puthillath
,
P.
,
Galan
,
J. M.
,
Ren
,
B.
,
Lissenden
,
C. J.
, and
Rose
,
J. L.
,
2013
, “
Ultrasonic Guided Wave Propagation Across Waveguide Transitions: Energy Transfer and Mode Conversion
,”
J. Acoust. Soc. Am.
,
133
(
5
), pp.
2624
2633
. 10.1121/1.4795805
53.
Schaal
,
C.
, and
Mal
,
A.
,
2016
, “
Lamb Wave Propagation in a Plate With Step Discontinuities
,”
Wave Motion
,
66
, pp.
177
189
. 10.1016/j.wavemoti.2016.06.012
54.
Mallet
,
L.
,
Lee
,
B. C.
,
Staszewski
,
W. J.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: II. Lamb Waves for Damage Detection
,”
Smart Mater. Struct.
,
13
(
2
), pp.
261
269
. 10.1088/0964-1726/13/2/003
55.
Dewhurst
,
R. J.
,
Edwards
,
C.
, and
Palmer
,
S. B.
,
1986
, “
Noncontact Detection of Surface-Breaking Cracks Using a Laser Acoustic Source and an Electromagnetic Acoustic Receiver
,”
Appl. Phys. Lett.
,
49
(
7
), pp.
374
376
. 10.1063/1.97591
56.
Edwards
,
R. S.
,
Dutton
,
B.
,
Clough
,
A. R.
, and
Rosli
,
M. H.
,
2011
, “
Enhancement of Ultrasonic Surface Waves at Wedge Tips and Angled Defects
,”
Appl. Phys. Lett.
,
99
(
9
), p.
9
. 10.1063/1.3629772
57.
Ziaja-Sujdak
,
A.
,
Cheng
,
L.
,
Radecki
,
R.
, and
Staszewski
,
W. J.
,
2018
, “
Near-Field Wave Enhancement and ‘Quasi-Surface’ Longitudinal Waves in a Segmented Thick-Walled Hollow Cylindrical Waveguide
,”
Struct. Heal. Monit.
,
17
(
2
), pp.
346
362
. 10.1177/1475921717694505
58.
Boonsang
,
S.
,
2009
, “
Photoacoustic Generation Mechanisms and Measurement Systems for Biomedical Applications
,”
Int. J. Appl. Biomed. Eng.
,
2
(
1
), pp.
17
23
.
59.
Fomitchov
,
P. A.
, and
Krishnaswamy
,
S.
,
2003
, “
Response of a Fiber Bragg Grating Ultrasonic Sensor
,”
Opt. Eng.
,
42
(
4
), pp.
956
963
. 10.1117/1.1556372
60.
Betz
,
D. C.
,
Thursby
,
G.
,
Culshaw
,
B.
, and
Staszewski
,
W. J.
,
2006
, “
Identification of Structural Damage Using Multifunctional Bragg Grating Sensors: I. Theory and Implementation
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1305
1312
. 10.1088/0964-1726/15/5/020
You do not currently have access to this content.