Abstract

This paper presents a non-contact air-coupled Lamb wave imaging technique using a two-dimensional (2D) cross-correlation method that not only detects the damage but also precisely quantifies for orientations and sizes. The air-coupled transducers (ACT) is used together with a scanning laser Doppler vibrometer (SLDV) for sensing, making a fully non-contact Lamb wave system used for this study. We first show that single-mode Lamb wave actuation can be achieved by the ACT-based on Snell's law. Detailed study and characterization of the directional ACT Lamb waves are conducted. For damage detection, a 2D cross-correlation imaging technique that uses the damage introduced scattered waves of all directions is proposed for correlating with the incident waves. The frequency-wavenumber filtering technique is used to implement the acquisition of the scatted waves and incident waves, respectively. In the end application to notches with various orientations and various sizes in terms of depth and length is given. The results show the proposed technique can precisely imaging the damages and can quantitatively evaluate the damage size in terms of length and depth.

References

References
1.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
New York
.
2.
Yuan
,
F.
,
2016
,
Structural Health Monitoring (SHM) in Aerospace Structures
,
Woodhead Publihsing
,
Cambridge, UK
.
3.
Giurgiutiu
,
V.
,
2007
,
Structural Health Monitoring: with Piezoelectric Wafer Active Sensors
,
Elsevier
,
New York
.
4.
Mei
,
H.
, and
Giurgiutiu
,
V.
,
2019
, “
Guided Wave Excitation and Propagation in Damped Composite Plates
,”
Struct. Health. Monit.
,
18
(
3
), pp.
690
714
. 10.1177/1475921718765955
5.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
. 10.1016/j.jsv.2006.01.020
6.
Yu
,
L.
, and
Giurgiutiu
,
V.
,
2008
, “
In Situ 2-D Piezoelectric Wafer Active Sensors Arrays for Guided Wave Damage Detection
,”
Ultrasonics
,
48
(
2
), pp.
117
134
. 10.1016/j.ultras.2007.10.008
7.
Mei
,
H.
,
Haider
,
M. F.
,
Joseph
,
R.
,
Migot
,
A.
, and
Giurgiutiu
,
V.
,
2019
, “
Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications
,”
Sensors
,
19
(
2
), p.
383
. 10.3390/s19020383
8.
Mei
,
H.
,
Haider
,
M. F.
,
James
,
R.
, and
Giurgiutiu
,
V.
,
2020
, “
Pure S0 and SH0 Detections of Various Damage Types in Aerospace Composites
,”
Composites, Part B
,
189
, p.
107906
. 10.1016/j.compositesb.2020.107906
9.
Liu
,
Z.
,
Yu
,
H.
,
He
,
C.
, and
Wu
,
B.
,
2013
, “
Delamination Damage Detection of Laminated Composite Beams Using air-Coupled Ultrasonic Transducers
,”
Sci. China: Phys., Mech. Astron.
,
56
(
7
), pp.
1269
1279
. 10.1007/s11433-013-5092-7
10.
An
,
Y. K.
,
Park
,
B.
, and
Sohn
,
H.
,
2013
, “
Complete Noncontact Laser Ultrasonic Imaging for Automated Crack Visualization in a Plate
,”
Smart Mater. Struct.
,
22
(
2
), p.
025022
. 10.1088/0964-1726/22/2/025022
11.
Tian
,
Z.
,
Howden
,
S.
,
Ma
,
Z.
,
Xiao
,
W.
, and
Yu
,
L.
,
2019
, “
Pulsed Laser-Scanning Laser Doppler Vibrometer (PL-SLDV) Phased Arrays for Damage Detection in Aluminum Plates
,”
Mech. Syst. Signal Process.
,
121
, pp.
158
170
. 10.1016/j.ymssp.2018.11.016
12.
Harb
,
M. S.
, and
Yuan
,
F. G.
,
2016
, “
Damage Imaging Using non-Contact Air-Coupled Transducer/Laser Doppler Vibrometer System
,”
Struct. Health. Monit.
,
15
(
2
), pp.
193
203
. 10.1177/1475921716636336
13.
Harb
,
M. S.
, and
Yuan
,
F. G.
,
2016
, “
Non-Contact Ultrasonic Technique for Lamb Wave Characterization in Composite Plates
,”
Ultrasonics
,
64
, pp.
162
169
. 10.1016/j.ultras.2015.08.011
14.
Xiao
,
W. F.
, and
Lu
,
C.
,
2015
, “
Measuring the Disperse Curves of air-Coupled Lamb Waves in Glass Fibre Reinforced Aluminium Laminate Based on Time–Frequency Analysis
,”
Mater. Res. Innovations
,
19
(
sup9
), pp.
S9
106
.
15.
Salzburger
,
H. J.
,
Niese
,
F.
, and
Dobmann
,
G.
,
2012
, “
EMAT Pipe Inspection with Guided Waves
,”
Weld. World
,
56
(
5–6
), pp.
35
43
. 10.1007/BF03321348
16.
Leong
,
W. H.
,
Staszewski
,
W. J.
,
Lee
,
B. C.
, and
Scarpa
,
F.
,
2005
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: III. Lamb Waves for Fatigue Crack Detection
,”
Smart Mater. Struct.
,
14
(
6
), p.
1387
. 10.1088/0964-1726/14/6/031
17.
Yan
,
F.
,
Hauck
,
E.
,
Mor Pera
,
T.
, and
Rose
,
J. L.
,
2007
, “
Ultrasonic Guided Wave Imaging of a Composite Plate with Air-Coupled Transducers
,”
AIP Conference Proceedings
,
AIP
,
March
, Vol.
894
, No.
1
, pp.
1007
1012
.
18.
Harb
,
M. S.
, and
Yuan
,
F. G.
,
2015
, “
A Rapid, Fully non-Contact, Hybrid System for Generating Lamb Wave Dispersion Curves
,”
Ultrasonics
,
61
, pp.
62
70
. 10.1016/j.ultras.2015.03.006
19.
Liu
,
Z.
,
Yu
,
H.
,
He
,
C.
, and
Wu
,
B.
,
2014
, “
Delamination Detection in Composite Beams Using Pure Lamb Mode Generated by air-Coupled Ultrasonic Transducer
,”
J. Intell. Mater. Syst. Struct.
,
25
(
5
), pp.
541
550
. 10.1177/1045389X13493339
20.
Harb
,
M. S.
, and
Yuan
,
F. G.
,
2017
, “
Barely Visible Impact Damage Imaging Using Non-Contact Air-Coupled Transducer/Laser Doppler Vibrometer System
,”
Struct. Health. Monit.
,
16
(
6
), pp.
663
673
. 10.1177/1475921716678921
21.
Yu
,
L.
, and
Tian
,
Z.
,
2013
, “
Lamb Wave Structural Health Monitoring Using a Hybrid PZT-Laser Vibrometer Approach
,”
Struct. Health. Monit.
,
12
(
5–6
), pp.
469
483
. 10.1177/1475921713501108
22.
Staszewski
,
W. J.
,
Lee
,
B. C.
,
Mallet
,
L.
, and
Scarpa
,
F.
,
2004
, “
Structural Health Monitoring Using Scanning Laser Vibrometry: I. Lamb Wave Sensing
,”
Smart Mater. Struct.
,
13
(
2
), p.
251
. 10.1088/0964-1726/13/2/002
23.
Köhler
,
B.
, and
Blackshire
,
J. L.
,
2006
, “
Laser Vibrometric Study of Plate Waves for Structural Health Monitoring (SHM)
,”
AIP Conference Proceedings
,
American Institute of Physics
,
March
, Vol.
820
, No.
1
, pp.
1672
1679
.
24.
Yu
,
L.
, and
Leckey
,
C. A.
,
2013
, “
Lamb Wave–Based Quantitative Crack Detection Using a Focusing Array Algorithm
,”
J. Intell. Mater. Syst. Struct.
,
24
(
9
), pp.
1138
1152
. 10.1177/1045389X12469452
25.
Kannusamy
,
M.
,
Kapuria
,
S.
, and
Sasmal
,
S.
,
2020
, “
Accurate Baseline-Free Damage Localization in Plates Using Refined Lamb Wave Time-Reversal Method
,”
Smart Mater. Struct.
,
29
(
055044
), pp.
1
17
.
26.
Ruzzene
,
M.
,
2007
, “
Frequency-wavenumber Domain Filtering for Improved Damage Visualization
,”
Ultrasonic And Advanced Methods For Nondestructive Testing And Material Characterization
, pp.
591
611
.
27.
Rogge
,
M. D.
, and
Leckey
,
C. A.
,
2013
, “
Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis
,”
Ultrasonics
,
53
(
7
), pp.
1217
1226
. 10.1016/j.ultras.2012.12.015
28.
Zhu
,
R.
,
Huang
,
G. L.
, and
Yuan
,
F. G.
,
2013
, “
Fast Damage Imaging Using the Time-Reversal Technique in the Frequency–Wavenumber Domain
,”
Smart Mater. Struct.
,
22
(
7
), p.
075028
. 10.1088/0964-1726/22/7/075028
29.
He
,
J.
, and
Yuan
,
F. G.
,
2015
, “
Damage Identification for Composite Structures Using a Cross-Correlation Reverse-Time Migration Technique
,”
Struct. Health. Monit.
,
14
(
6
), pp.
558
570
. 10.1177/1475921715602546
30.
He
,
J.
, and
Yuan
,
F. G.
,
2016
, “
A Quantitative Damage Imaging Technique Based on Enhanced CCRTM for Composite Plates Using 2D Scan
,”
Smart Mater. Struct.
,
25
(
10
), p.
105022
. 10.1088/0964-1726/25/10/105022
31.
Chia
,
C. C.
,
Lee
,
J. R.
,
Park
,
C. Y.
, and
Jeong
,
H. M.
,
2012
, “
Laser Ultrasonic Anomalous Wave Propagation Imaging Method With Adjacent Wave Subtraction: Application to Actual Damages in Composite Wing
,”
Opt. Laser Technol.
,
44
(
2
), pp.
428
440
. 10.1016/j.optlastec.2011.08.007
32.
Xiao
,
W.
, and
Yu
,
L.
,
2019
, “
Nondestructive Evaluation with Fully non-Contact air-Coupled Transducer-Scanning Laser Doppler Vibrometer Lamb Wave System
,”
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII
,
International Society for Optics and Photonics
,
April
, Vol.
10971
, p.
109711G
.
33.
Michaels
,
J. E.
,
2017
, “
Ultrasonic Wavefield Imaging: Research Tool or Emerging NDE Method?
,”
AIP Conference Proceedings
,
AIP Publishing LLC
,
February
, Vol.
1806
, No.
1
, p.
020001
.
34.
Zayed
,
A.
,
2018
,
Advances in Shannon's Sampling Theory
,
Routledge
,
New York
.
35.
Chennamsetti
,
R.
, and
Khan
,
I.
,
2015
, “
A0 Lamb Mode Radiation Characteristics of air-Coupled Transducers in Isotropic Plates
,”
Int. J. Precis. Eng. Manuf.
,
16
(
1
), pp.
121
125
. 10.1007/s12541-015-0015-3
36.
Chang
,
W. F.
, and
McMechan
,
G. A.
,
1986
, “
Reverse-time Migration of Offset Vertical Seismic Profiling Data Using the Excitation-Time Imaging Condition
,”
Geophysics
,
51
(
1
), pp.
67
84
. 10.1190/1.1442041
37.
Sava
,
P.
, and
Vlad
,
I.
,
2011
, “
Wide-Azimuth Angle Gathers for Wave-Equation Migration
,”
Geophysics
,
76
(
3
), pp.
S131
S141
. 10.1190/1.3560519
You do not currently have access to this content.