Abstract

Adverse environmental conditions result in corrosion during the life cycle of marine structures such as pipelines, offshore oil platforms, and ships. Generalized corrosion leading to the loss of wall thickness can cause the degradation of the integrity, strength, and load bearing capacity of the structure. Nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high-frequency guided waves propagating along the structure. Using standard ultrasonic wedge transducers with single-sided access to the structure, specific high-frequency guided wave modes (overlap of both fundamental Lamb wave modes) were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depend on the thickness of the structure and were measured using a noncontact laser interferometer. Numerical simulations using a two-dimensional finite element model were performed to visualize and predict the guided wave propagation and energy transfer across the plate thickness. During laboratory experiments, the wall thickness was reduced uniformly by milling of one steel plate specimen. In a second step, wall thickness reduction was induced using accelerated corrosion for two mild steel plates. The corrosion damage was monitored based on the effect on the wave propagation and interference (beating effect) of the Lamb wave modes in the frequency domain. Good agreement of the measured beatlengths with theoretical predictions was achieved, and the sensitivity of the methodology was ascertained, showing that high-frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations.

References

1.
Sharma
,
S.
, and
Mukherjee
,
A.
,
2015
, “
Ultrasonic Guided Waves for Monitoring Corrosion in Submerged Plates
,”
Struct. Control Health Monit.
,
22
(
1
), pp.
19
35
. 10.1002/stc.1657
2.
Nakai
,
T.
,
Matsushita
,
H.
,
Yamamoto
,
N.
, and
Arai
,
H.
,
2004
, “
Effect of Pitting Corrosion on Local Strength of Hold Frames of Bulk Carriers (1st Report)
,”
Marine Struct.
,
17
(
5
), pp.
403
432
. 10.1016/j.marstruc.2004.10.001
3.
Cawley
,
P.
,
Cegla
,
F.
, and
Stone
,
M.
,
2013
, “
Corrosion Monitoring Strategies—Choice Between Area and Point Measurements
,”
J. Nondestruct. Eval.
,
32
(
2
), pp.
156
163
. 10.1007/s10921-012-0168-2
4.
Hall
,
J. S.
,
Fromme
,
P.
, and
Michaels
,
J. E.
,
2014
, “
Guided Wave Damage Characterization via Minimum Variance Imaging With a Distributed Array of Ultrasonic Sensors
,”
J. Nondestruct. Eval.
,
33
(
3
), pp.
299
308
. 10.1007/s10921-013-0212-x
5.
Rose
,
J. L.
,
2002
, “
Standing on the Shoulders of Giants: An Example of Guided Wave Inspection
,”
Mat. Eval.
,
60
(
1
), pp.
53
59
.
6.
Zeng
,
L.
,
Luo
,
Z.
,
Lin
,
J.
, and
Hua
,
J.
,
2017
, “
Excitation of Lamb Waves Over a Large Frequency-Thickness Product Range for Corrosion Detection
,”
Smart Mater. Struct.
,
26
(
9
), p.
095012
. 10.1088/1361-665X/aa7774
7.
Fromme
,
P.
,
Wilcox
,
P. D.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
2006
, “
On the Development and Testing of a Guided Ultrasonic Wave Array for Structural Integrity Monitoring
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
(
4
), pp.
777
785
. 10.1109/TUFFC.2006.1621505
8.
Wang
,
J.
, and
Shen
,
Y.
,
2019
, “
An Enhanced Lamb Wave Virtual Time Reversal Technique for Damage Detection With Transducer Transfer Function Compensation
,”
Smart Mater. Struct.
,
28
(
8
), p.
085017
. 10.1088/1361-665X/ab1fc8
9.
Jenot
,
F.
,
Ouaftouh
,
M.
,
Duquennoy
,
M.
, and
Ourak
,
M.
,
2001
, “
Corrosion Thickness Gauging in Plates Using Lamb Wave Group Velocity Measurements
,”
Meas. Sci. Technol.
,
12
(
8
), pp.
1287
1293
. 10.1088/0957-0233/12/8/341
10.
Huthwaite
,
P.
,
Ribichini
,
R.
,
Cawley
,
P.
, and
Lowe
,
M. J. S.
,
2013
, “
Mode Selection for Corrosion Detection in Pipes and Vessels via Guided Wave Tomography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
6
), pp.
1165
1177
. 10.1109/TUFFC.2013.2679
11.
Nagy
,
P. B.
,
Simonetti
,
F.
, and
Instanes
,
G.
,
2014
, “
Corrosion and Erosion Monitoring in Plates and Pipes Using Constant Group Velocity Lamb Wave Inspection
,”
Ultrasonics
,
54
(
7
), pp.
1832
1841
. 10.1016/j.ultras.2014.01.017
12.
Howard
,
R.
, and
Cegla
,
F.
,
2017
, “
On the Probability of Detecting Wall Thinning Defects With Dispersive Circumferential Guided Waves
,”
NDT&E Int.
,
86
, pp.
73
82
. 10.1016/j.ndteint.2016.11.011
13.
Khalili
,
P.
, and
Cawley
,
P.
,
2018
, “
The Choice of Ultrasonic Inspection Method for the Detection of Corrosion at Inaccessible Locations
,”
NDT&E Int.
,
99
, pp.
80
92
. 10.1016/j.ndteint.2018.06.003
14.
Burch
,
S. F.
,
Collett
,
N. J.
,
Terpstra
,
S.
, and
Hoekstra
,
M. V.
,
2007
, “
M-skip: A Quantitative Technique for the Measurement of Wall Loss in Inaccessible Components
,”
Insight
,
49
(
4
), pp.
190
194
. 10.1784/insi.2007.49.4.190
15.
Greve
,
D. W.
,
Zheng
,
P.
, and
Oppenheim
,
I. J.
,
2008
, “
The Transition From Lamb Waves to Longitudinal Waves in Plates
,”
Smart Mater. Struct.
,
17
(
3
), p.
035029
. 10.1088/0964-1726/17/3/035029
16.
Terrien
,
N.
,
Osmont
,
D.
,
Royer
,
D.
,
Lepoutre
,
F.
, and
Déom
,
A.
,
2007
, “
A Combined Finite Element and Modal Decomposition Method to Study the Interaction of Lamb Modes With Micro-Defects
,”
Ultrasonics
,
46
(
1
), pp.
74
78
. 10.1016/j.ultras.2006.11.001
17.
Ratnam
,
D.
,
Balasubramaniam
,
K.
, and
Maxfield
,
B. W.
,
2012
, “
Generation and Detection of Higher-Order Mode Clusters of Guided Waves (HOMC-GW) Using Meander-Coil EMATs
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
4
), pp.
727
737
. 10.1109/TUFFC.2012.2250
18.
Masserey
,
B.
, and
Fromme
,
P.
,
2015
, “
In-Situ Monitoring of Fatigue Crack Growth Using High Frequency Guided Waves
,”
NDT&E Int.
,
71
, pp.
1
7
. 10.1016/j.ndteint.2014.12.007
19.
Masserey
,
B.
, and
Fromme
,
P.
,
2009
, “
Surface Defect Detection in Stiffened Plate Structures Using Rayleigh-Like Wave
,”
NDT&E Int.
,
42
(
6
), pp.
564
572
. 10.1016/j.ndteint.2009.04.006
20.
Chew
,
D.
, and
Fromme
,
P.
,
2014
, “
Monitoring of Corrosion Damage Using High-Frequency Guided Ultrasonic Waves
,”
Proc. SPIE
,
9064
, p.
90642F
. 10.1117/12.2046301
21.
Chew
,
D.
, and
Fromme
,
P.
,
2015
, “
High-Frequency Guided Waves for Corrosion Monitoring
,”
AIP Conf. Proc.
,
1650
, pp.
777
784
. 10.1063/1.4914680
22.
Virieux
,
J.
,
1986
, “
P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method
,”
Geophysics
,
51
(
4
), pp.
889
901
. 10.1190/1.1442147
23.
Masserey
,
B.
, and
Mazza
,
E.
,
2005
, “
Analysis of the Near-Field Ultrasonic Scattering at a Surface Crack
,”
J. Acoust. Soc. Am.
,
118
(
6
), pp.
3585
3594
. 10.1121/1.2109407
24.
Masserey
,
B.
,
Raemy
,
C.
, and
Fromme
,
P.
,
2014
, “
High-Frequency Guided Ultrasonic Waves for Hidden Defect Detection in Multi-Layered Aircraft Structures
,”
Ultrasonics
,
54
(
7
), pp.
1720
1728
. 10.1016/j.ultras.2014.04.023
25.
Ti
,
B. W.
,
O’Brien
,
W. D.
, and
Harris
,
J. G.
,
1997
, “
Measurements of Coupled Rayleigh Wave Propagation in an Elastic Plate
,”
J. Acoust. Soc. Am.
,
102
(
3
), pp.
1528
1531
. 10.1121/1.419554
26.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
, Vol.
2
,
Wiley
,
New York
.
27.
Pavlakovic
,
B.
,
Lowe
,
M. J. S.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1997
,
Rev. Prog. QNDE 16
,
D. O.
Thompson
and
D. E.
Chimenti
, eds.,
Plenum Press
,
New York
, pp.
185
192
.
28.
Masserey
,
B.
, and
Fromme
,
P.
,
2009
, “
High-Frequency Guided Waves for Defect Detection in Stiffened Plate Structures
,”
Insight
,
51
(
12
), pp.
667
671
. 10.1784/insi.2009.51.12.667
You do not currently have access to this content.