Abstract

As one of the fastest-growing technologies over the past half century, integrated circuit (IC) packaging is getting smaller and more complex. For example, typical silicon wafers in modern IC packaging have thicknesses ranging from several to tens of micrometers, and their coating layers are in the range of a few nanometers. Because the silicon wafer is the main substrate in IC packaging, it is important to accurately measure the geometry of a silicon wafer, especially its coating thickness, for process monitoring and quality control. In this study, an ultrafast ultrasonic measurement system is developed using a femtosecond laser for silicon wafer coating thickness estimation. The proposed technique provides the following unique features: (1) an ultrafast ultrasonic measurement system using a femtosecond laser is developed specifically for silicon wafer coating thickness estimation; (2) the developed system can estimate the thickness of a coating layer in the range of sub-micrometer; (3) except for the wave speed in the coating material, coating thickness can be estimated without any other prior knowledge of the coating material properties or substrate characteristics such as optical constants; and (4) the thermal effects on the ultrasonic waves propagating within a thin coating layer are explicitly considered and minimized for coating thickness estimation. Using the developed system, validation tests were successfully performed on gold-coated silicon wafers with different coating thicknesses.

References

References
1.
Gao
,
S.
,
Kang
,
R.
,
Dong
,
Z.
, and
Zhang
,
B.
,
2013
, “
Edge Chipping of Silicon Wafers in Diamond Grinding
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
31
37
. 10.1016/j.ijmachtools.2012.08.002
2.
Aryan
,
P.
,
Sampath
,
S.
, and
Sohn
,
H.
,
2018
, “
An Overview of Non-Destructive Testing Methods for Integrated Circuit Packaging Inspection
,”
Sensors
,
18
(
7
), p.
1981
. 10.3390/s18071981
3.
Kim
,
Y. S.
,
Maeda
,
N.
,
Kitada
,
H.
,
Fujimoto
,
K.
,
Kodama
,
S.
,
Kawai
,
A.
,
Arai
,
K.
,
Suzuki
,
K.
,
Nakamura
,
T.
, and
Ohba
,
T.
,
2013
, “
Advanced Wafer Thinning Technology and Feasibility Test for 3D Integration
,”
Microelectron. Eng.
,
107
, pp.
65
71
. 10.1016/j.mee.2012.10.025
4.
Zhou
,
L.
,
Tian
,
Y. B.
,
Huang
,
H.
,
Sato
,
H.
, and
Shimizu
,
J.
,
2011
, “
A Study on the Diamond Grinding of Ultra-Thin Silicon Wafers
,”
Proc. Inst. Mech. Eng. B
,
226
(
1
), pp.
66
75
. 10.1177/0954405411414768
5.
Hughes-Oliver
,
J. M.
,
Lu
,
J.-C.
,
Davis
,
J. C.
, and
Gyurcsik
,
R. S.
,
1998
, “
Achieving Uniformity in a Semiconductor Fabrication Process Using Spatial Modeling
,”
J. Am. Stat. Assoc.
,
93
(
441
), pp.
36
45
. 10.1080/01621459.1998.10474085
6.
Jin
,
J.
,
Kim
,
J. W.
,
Kang
,
C.-S.
,
Kim
,
J.-A.
, and
Eom
,
T. B.
,
2010
, “
Thickness and Refractive Index Measurement of a Silicon Wafer Based on an Optical Comb
,”
Opt. Express
,
18
(
17
), pp.
18339
18346
. 10.1364/OE.18.018339
7.
Galarza
,
C. G.
,
Khargonekar
,
P. P.
,
Layadi
,
N.
,
Vincent
,
T. L.
,
Rietman
,
E. A.
, and
Lee
,
J. T. C.
,
1998
, “
A New Algorithm for Real-Time Thin Film Thickness Estimation Given in Situ Multiwavelength Ellipsometry Using an Extended Kalman Filter
,”
Thin Solid Films
,
313–314
, pp.
156
160
. 10.1016/S0040-6090(97)00803-1
8.
Hlubina
,
P.
,
Luňáček
,
J.
,
Ciprian
,
D.
, and
Chlebus
,
R.
,
2008
, “
Spectral Interferometry and Reflectometry Used to Measure Thin Films
,”
Appl. Phys. B: Lasers Opt.
,
92
(
2
), pp.
203
207
. 10.1007/s00340-008-3093-4
9.
Hlubina
,
P.
,
Ciprian
,
D.
,
Luňáček
,
J.
, and
Chlebus
,
R.
,
2007
, “
Phase Retrieval From the Spectral Interference Signal Used to Measure Thickness of SiO2 Thin Film on Silicon Wafer
,”
Appl. Phys. B: Lasers Opt.
,
88
(
3
), pp.
397
403
. 10.1007/s00340-007-2709-4
10.
Gao
,
F.
,
Muhamedsalih
,
H.
, and
Jiang
,
X.
,
2012
, “
Surface and Thickness Measurement of a Transparent Film Using Wavelength Scanning Interferometry
,”
Opt. Express
,
12
(
19
), pp.
21450
21456
. 10.1364/OE.20.021450
11.
Kappen
,
P.
,
Reihs
,
K.
,
Seidel
,
C.
,
Voetz
,
M.
, and
Fuchs
,
H.
,
2000
, “
Overlayer Thickness Determination by Angular Dependent X-ray Photoelectron Spectroscopy (ADXPS) of Rough Surfaces With a Spherical Topgraphy
,”
Surf. Sci.
,
465
(
1–2
), pp.
40
50
. 10.1016/S0039-6028(00)00653-1
12.
Cole
,
D. A.
,
Shallenberger
,
J. R.
,
Novak
,
S. W.
,
Moore
,
R. L.
,
Edgell
,
M. J.
,
Smith
,
S. P.
,
Hitzman
,
C. J.
,
Kirchhoff
,
J. F.
,
Principe
,
E.
,
Nieveen
,
W.
,
Huang
,
F. K.
,
Biswas
,
S.
,
Bleiler
,
R. J.
, and
Jones
,
K.
,
2000
, “
SiO2 Thickness Determination by X-ray Photoelectron Spectroscopy, Auger Electron Spectroscopy, Secondary Ion Mass Spectrometry, Rutherford Backscattering, Transmission Electron Microscopy, and Ellipsometry
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom.
,
18
(
1
), pp.
440
444
. 10.1116/1.591208
13.
Pei
,
J.
,
Degertekin
,
F. L.
,
Khuri-Yakub
,
B. T.
, and
Saraswat
,
K. C.
,
1995
, “
In Situ Thin Film Thickness Measurement With Acoustic Lamb Waves
,”
Appl. Phys. Lett.
,
66
(
17
), pp.
2177
2179
. 10.1063/1.113938
14.
Matsuda
,
O.
,
Larciprete
,
M. C.
,
Li Voti
,
R.
, and
Wright
,
O. B.
,
2015
, “
Fundamentals of Picosecond Laser Ultrasonics
,”
Ultrasonics
,
56
, pp.
3
20
. 10.1016/j.ultras.2014.06.005
15.
Grahn
,
H. T.
,
Maris
,
H. J.
, and
Jan
,
T.
,
1989
, “
Picosecond Ultrasonics
,”
IEEE J. Quantum Electron.
,
25
(
12
), pp.
2562
2569
. 10.1109/3.40643
16.
Higuet
,
J.
,
Valier-Brasier
,
T.
,
Dehoux
,
T.
, and
Audoin
,
B.
,
2011
, “
Beam Distortion Detection and Deflectometry Measurements of Gigahertz Surface Acoustic Waves
,”
Rev. Sci. Instrum.
,
82
(
11
), p.
114905
. 10.1063/1.3660193
17.
Tachizaki
,
T.
,
Muroya
,
T.
,
Matsuda
,
O.
,
Sugawara
,
Y.
,
Hurley
,
D. H.
, and
Wright
,
O. B.
,
2006
, “
Scanning Ultrafast Sagnac Interferometry for Imaging Two-Dimensional Surface Wave Propagation
,”
Rev. Sci. Instrum.
,
77
(
4
), p.
043713
. 10.1063/1.2194518
18.
Zhang
,
S.
,
Péronne
,
E.
,
Belliard
,
L.
,
Vincent
,
S.
, and
Perrin
,
B.
,
2011
, “
Three-Dimensional Acoustic Wavefront Imaging in Anisotropic Systems by Picosecond Acoustics
,”
J. Appl. Phys.
,
109
(
3
), p.
033507
. 10.1063/1.3532034
19.
Hostetler
,
J. L.
,
Smith
,
A. N.
,
Czajkowsky
,
D. M.
, and
Norris
,
P. M.
,
1999
, “
Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,”
Appl. Opt.
,
38
(
16
), pp.
3614
3620
. 10.1364/AO.38.003614
20.
Taketoshi
,
N.
,
Baba
,
T.
, and
Ono
,
A.
,
1999
, “
Observation of Heat Diffusion Across Submicrometer Metal Thin Films Using a Picosecond Thermoreflectance Technique
,”
Jpn. J. Appl. Phys.
,
38
(
Part 2, No. 11A
), pp.
L1268
L1271
. 10.1143/JJAP.38.L1268
21.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
. 10.1063/1.3006335
22.
Bougher
,
T. L.
,
Yates
,
L.
,
Lo
,
C.-F.
,
Johnson
,
W.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2016
, “
Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance With Robust Monte Carlo Uncertainty Estimation
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
1
), pp.
22
32
. 10.1080/15567265.2016.1154630
23.
Liu
,
P.
,
Sohn
,
H.
,
Yang
,
S.
, and
Kundu
,
T.
,
2015
, “
Fatigue Crack Localization Using Noncontact Laser Ultrasonics and State Space Attractors
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
890
898
. 10.1121/1.4927091
24.
Monchalin
,
J.-P.
,
2004
, “
Laser-Ultrasonics: From the Laboratory to Industry
,”
AIP Conf. Proc.
,
700
(
1
), pp.
3
31
. 10.1063/1.1711602
25.
Perrin
,
B.
,
Rossignol
,
C.
,
Bonello
,
B.
, and
Jeannet
,
J.-C.
,
1999
, “
Interferometric Detection in Picosecond Ultrasonics
,”
Phys. B
,
263–264
, pp.
571
573
. 10.1016/S0921-4526(98)01479-3
26.
Chigarev
,
N.
,
Rossignol
,
C.
, and
Audoin
,
B.
,
2006
, “
Surface Displacement Measured by Beam Distortion Detection Technique: Application to Picosecond Ultrasonics
,”
Rev. Sci. Instrum.
,
77
(
11
), p.
114901
. 10.1063/1.2372739
27.
Salenbien
,
R.
,
Côte
,
R.
,
Goossens
,
J.
,
Limaye
,
P.
,
Labie
,
R.
, and
Glorieux
,
C.
,
2011
, “
Laser-Based Surface Acoustic Wave Dispersion Spectroscopy for Extraction of Thicknesses, Depth, and Elastic Parameters of a Subsurface Layer: Feasibility Study on Intermetallic Layer Structure in Integrated Circuit Solder Joint
,”
J. Appl. Phys.
,
109
(
9
), p.
093104
. 10.1063/1.3573389
28.
Liu
,
P.
,
Yi
,
K.
, and
Sohn
,
H.
,
2020
, “
Coating Thickness Estimation in Silicon Wafer Using Ultrafast Ultrasonic Measurement
,” Health Monitoring of Structural and Biological Systems IX, Vol.
11381
, p.
113811E
, International Society for Optics and Photonics.
29.
Kudryashov
,
S. I.
,
Saraeva
,
I. N.
,
Lednev
,
V. N.
,
Pershin
,
S. M.
,
Rudenko
,
A. A.
, and
Ionin
,
A. A.
,
2018
, “
Single-Shot Femtosecond Laser Ablation of Gold Surface in Air and Isopropyl Alcohol
,”
Appl. Phys. Lett.
,
112
(
20
), p.
203101
. 10.1063/1.5026591
30.
Vollmann
,
J.
,
Profunser
,
D. M.
, and
Dual
,
J.
,
2002
, “
Sensitivity Improvement of a Pump-Probe Set-Up for Thin Film and Microstructure Metrology
,”
Ultrasonics
,
40
(
1–8
), pp.
757
763
. 10.1016/S0041-624X(02)00207-X
31.
Sun
,
Y.
,
Saka
,
M.
,
Li
,
J.
, and
Yang
,
J.
,
2010
, “
Ultrafast Laser-Induced Thermoelastic Behavior in Metal Films
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1202
1207
. 10.1016/j.ijmecsci.2010.05.006
32.
Gan
,
Y.
, and
Chen
,
J. K.
,
2010
, “
Thermomechanical Wave Propagation in Gold Films Induced by Ultrashort Laser Pulses
,”
Mech. Mater.
,
42
(
4
), pp.
491
501
. 10.1016/j.mechmat.2010.01.006
33.
Konstantinidis
,
G.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
The Temperature Stability of Guided Wave Structural Health Monitoring Systems
,”
Smart Mater. Struct.
,
15
(
4
), pp.
967
976
. 10.1088/0964-1726/15/4/010
34.
Salama
,
K.
, and
Ling
,
C. K.
,
1980
, “
The Effect of Stress on the Temperature Dependence of Ultrasonic Velocity
,”
J. Appl. Phys.
,
51
(
3
), pp.
1505
1509
. 10.1063/1.327800
You do not currently have access to this content.