Abstract

X-ray phase contrast imaging (XPCI) is a nondestructive evaluation technique that enables high-contrast detection of low-attenuation materials that are largely transparent in traditional radiography. Extending a grating-based Talbot-Lau XPCI system to three-dimensional imaging with computed tomography (CT) imposes two motion requirements: the analyzer grating must translate transverse to the optical axis to capture image sets for XPCI reconstruction, and the sample must rotate to capture angular data for CT reconstruction. The acquisition algorithm choice determines the order of movement and positioning of the two stages. The choice of the image acquisition algorithm for XPCI CT is instrumental to collecting high fidelity data for reconstruction. We investigate how data acquisition influences XPCI CT by comparing two simple data acquisition algorithms and determine that capturing a full phase-stepping image set for a CT projection before rotating the sample results in higher quality data.

References

References
1.
Momose
,
A.
,
2005
, “
Recent Advances in X-Ray Phase Imaging
,”
Jpn. J. Appl. Phys.
,
44
(
9A
), pp.
6355
6367
. 10.1143/JJAP.44.6355
2.
Endrizzi
,
M.
,
2018
, “
X-Ray Phase-Contrast Imaging
,”
Nucl. Instrum. Methods Phys. Res. Sect. A: Acceler., Spectrom., Detectors Assoc. Equip.
,
878
, pp.
88
98
. 10.1016/j.nima.2017.07.036
3.
Pfeiffer
,
F.
,
Bunk
,
O.
,
Kottler
,
C.
, and
David
,
C.
,
2007
, “
Tomographic Reconstruction of Three-Dimensional Objects From Hard X-Ray Differential Phase Contrast Projection Images
,”
Nucl. Instrum. Methods Phys. Res. Sect. A: Acceler., Spectrom., Detectors Assoc. Equip.
,
580
(
2
), pp.
925
928
. 10.1016/j.nima.2007.06.104
4.
Pfeiffer
,
F.
,
Kottler
,
C.
,
Bunk
,
O.
, and
David
,
C.
,
2007
, “
Hard X-Ray Phase Tomography With Low-Brilliance Sources
,”
Phys. Rev. Lett.
,
98
(
10
), p.
108105
. 10.1103/PhysRevLett.98.108105
5.
Pfeiffer
,
F.
,
Weitkamp
,
T.
,
Bunk
,
O.
, and
David
,
C.
,
2006
, “
Phase Retrieval and Differential Phase-Contrast Imaging With Low-Brilliance X-Ray Sources
,”
Nat. Phys.
,
2
(
4
), p.
258
. 10.1038/nphys265
6.
Pfeiffer
,
F.
,
Bech
,
M.
,
Bunk
,
O.
,
Kraft
,
P.
,
Eikenberry
,
E. F.
,
Brönnimann
,
C.
,
Grünzweig
,
C.
, and
David
,
C.
,
2008
, “
Hard-X-Ray Dark-Field Imaging Using a Grating Interferometer
,”
Nat. Mater.
,
7
(
2
), pp.
134
137
. 10.1038/nmat2096
7.
Pfeiffer
,
F.
,
Bech
,
M.
,
Bunk
,
O.
,
Donath
,
T.
,
Henrich
,
B.
,
Kraft
,
P.
, and
David
,
C.
,
2009
, “
X-Ray Dark-Field and Phase-Contrast Imaging Using a Grating Interferometer
,”
J. Appl. Phys.
,
105
(
10
), pp.
1
4
. 10.1063/1.3115639
8.
Weitkamp
,
T.
,
Diaz
,
A.
,
David
,
C.
,
Pfeiffer
,
F.
,
Stampanoni
,
M.
,
Cloetens
,
P.
, and
Ziegler
,
E.
,
2005
, “
X-Ray Phase Imaging With a Grating Interferometer
,”
Opt. Exp.
,
13
(
16
), pp.
6296
6304
. 10.1364/OPEX.13.006296
9.
Shannon
,
C. E.
,
1949
, “
Communication in the Presence of Noise
,”
Proc. IRE
,
37
(
1
), pp.
10
21
. 10.1109/JRPROC.1949.232969
10.
Feldkamp
,
L. A.
,
Davis
,
L. C.
, and
Kress
,
J. W.
,
1984
, “
Practical Cone-Beam Algorithm
,”
Josa a
,
1
(
6
), pp.
612
619
. 10.1364/JOSAA.1.000612
11.
Finnegan
,
P. S.
,
Hollowell
,
A. E.
,
Arrington
,
C. L.
, and
Dagel
,
A. L.
,
2019
, “
High Aspect Ratio Anisotropic Silicon Etching for X-Ray Phase Contrast Imaging Grating Fabrication
,”
Mater. Sci. Semicond. Process.
,
92
, pp.
80
85
. 10.1016/j.mssp.2018.06.013
12.
Thompson
,
K. R.
,
Dagel
,
A.
,
Goodner
,
R. N.
, and
Epstein
,
C.
,
2019
, “
Progress on Building a Laboratory Based X-Ray Phase Contrast Imaging Computed Tomography System
,”
AIP Conference Proceedings
,
Vermont
,
July 15–19
, Vol.
2102
, AIP Publishing LLC, p.
030001
.
13.
Zanette
,
I.
,
Bech
,
M.
,
Pfeiffer
,
F.
, and
Weitkamp
,
T.
,
2011
, “
Interlaced Phase Stepping in Phase-Contrast X-Ray Tomography
,”
Appl. Phys. Lett.
,
98
(
9
), pp.
2009
2012
. 10.1063/1.3559849
14.
Zanette
,
I.
,
Bech
,
M.
,
Rack
,
A.
,
Le Duc
,
G.
,
Tafforeau
,
P.
,
David
,
C.
,
Mohr
,
J.
,
Pfeiffer
,
F.
, and
Weitkamp
,
T.
,
2012
, “
Trimodal Low-Dose X-Ray Tomography
,”
Proc. Natl. Acad. Sci. USA
,
109
(
26
), pp.
10199
10204
. 10.1073/pnas.1117861109
15.
Fu
,
J.
,
Willner
,
M.
,
Chen
,
L.
,
Tan
,
R.
,
Achterhold
,
K.
,
Bech
,
M.
,
Herzen
,
J.
,
Kunka
,
D.
,
Mohr
,
J.
, and
Pfeiffer
,
F.
,
2014
, “
Helical Differential X-Ray Phase-Contrast Computed Tomography
,”
Phys. Medica
,
30
(
3
), pp.
374
379
. 10.1016/j.ejmp.2014.01.005
16.
Bevins
,
N.
,
Zambelli
,
J.
,
Li
,
K.
,
Qi
,
Z.
, and
Chen
,
G. H.
,
2012
, “
Multicontrast X-Ray Computed Tomography Imaging Using Talbot-Lau Interferometry Without Phase Stepping
,”
Medical Physics
,
39
(
1
), pp.
424
428
. 10.1118/1.3672163
17.
Dagel
,
A. L.
,
West
,
R. D.
,
Goodner
,
R. N.
,
Grover
,
S.
,
Epstein
,
C.
, and
Thompson
,
K.
,
2019
, “
Optimization of Hardware and Image Processing for Improved Image Quality in X-Ray Phase Contrast Imaging
,”
SPIE Defense + Commercial Sensing
,
Baltimore, MD
,
Apr. 14–18
, p.
109990S
.
18.
Marco
,
F. D.
,
Marschner
,
M.
,
Birnbacher
,
L.
,
Noël
,
P.
,
Herzen
,
J.
, and
Pfeiffer
,
F.
,
2018
, “
Analysis and Correction of Bias Induced by Phase Stepping Jitter in Grating-Based X-Ray Phase-Contrast Imaging
,”
Opt. Express
,
26
(
10
), pp.
12707
12722
. 10.1364/OE.26.012707
You do not currently have access to this content.