Abstract

This study presents a method of ultrasonic flaw identification using phased array ultrasonic inspection data. Raw data from each individual channel of the phased array ultrasonic inspection are obtained. The data trimming and de-noising are employed to retain the data within the boundary of the inspected object and remove the speckle noise components from the raw data, respectively. The resulting data are passed into a sequence of signal processing operations to identify embedded flaws. A shape-based filtering method is proposed to reduce the intensity of geometric noise components due to the non-uniform microstructures introduced in the manufacturing process. The resulting data matrices are integrated to obtain the intensity matrix of the possible flaw regions. Thresholding is applied to the intensity matrix to obtain the potential flaw regions, followed by a connected component analysis to identify the flaws. The overall method is demonstrated and validated using realistic phased array experimental data.

References

References
1.
Schmerr
,
L. W.
,
2016
,
Fundamentals of Ultrasonic Nondestructive Evaluation
,
Springer
,
New York, NY
.
2.
Shao
,
Y.
,
Zeng
,
L.
,
Lin
,
J.
,
Wu
,
W.
, and
Zhang
,
H.
,
2019
, “
Trailing Pulses Self-Focusing for Ultrasonic-Based Damage Detection in Thick Plates
,”
Mech. Syst. Sig. Process.
,
119
, pp.
420
431
. 10.1016/j.ymssp.2018.09.031
3.
Marguères
,
P.
, and
Meraghni
,
F.
,
2013
, “
Damage Induced Anisotropy and Stiffness Reduction Evaluation in Composite Materials Using Ultrasonic Wave Transmission
,”
Composites Part A
,
45
, pp.
134
144
. 10.1016/j.compositesa.2012.09.007
4.
Furgason
,
E. S.
,
Newhouse
,
V. L.
,
Bilgutay
,
N. M.
, and
Cooper
,
G. R.
,
1975
, “
Application of Random Signal Correlation Techniques to Ultrasonic Flaw Detection
,”
Ultrasonics
,
13
(
1
), pp.
11
17
. 10.1016/0041-624X(75)90017-7
5.
Guan
,
X.
,
Zhang
,
J.
,
Zhou
,
S.
,
Rasselkorde
,
E. M.
, and
Abbasi
,
W.
,
2014
, “
Probabilistic Modeling and Sizing of Embedded Flaws in Ultrasonic Non-Destructive Inspections for Fatigue Damage Prognostics and Structural Integrity Assessment
,”
NDT&E Int.
,
61
, pp.
1
9
. 10.1016/j.ndteint.2013.09.003
6.
Aymerich
,
F.
, and
Meili
,
S.
,
2000
, “
Ultrasonic Evaluation of Matrix Damage in Impacted Composite Laminates
,”
Composites, Part B
,
31
(
1
), pp.
1
6
. 10.1016/S1359-8368(99)00067-0
7.
Charlesworth
,
C.
,
2011
, “
Phased Array Ultrasonic Inspection of Low-Pressure Steam Turbine Rotors—Curved Axial Entry Fir Tree Roots
,”
Insight—Non-Destructive Testing and Condition Monitoring
,
53
(
2
), pp.
71
75
. 10.1784/insi.2011.53.2.71
8.
Carvalho
,
A. A.
,
Sagrilo
,
L. V. S.
,
Silva
,
I. C.
,
Rebello
,
J. M. A.
, and
Carneval
,
R. O.
,
2003
, “
On the Reliability of an Automated Ultrasonic System for Hull Inspection in Ship-Based oil Production Units
,”
Appl. Ocean Res.
,
25
(
5
), pp.
235
241
. 10.1016/j.apor.2004.02.004
9.
Jones
,
A. R. D.
,
Noble
,
R. A.
,
Bozeat
,
R. J.
,
Hutchins
,
D. A.
, and
International Society for Optics and Photonics
,
1999
, “
Micromachined Ultrasonic Transducers for Damage Detection in CFRP Composites
,”
Smart Structures and Materials 1999: Smart Electronics and MEMS
,
San Diego, CA
,
July 20
, pp.
369
378
.
10.
Stubbs
,
D.
,
Cook
,
R.
,
Erdahl
,
D.
,
Fiscus
,
I.
,
Gasper
,
D.
,
Hoeffel
,
J.
,
Hoppe
,
W.
,
Kramb
,
V.
,
Kulhman
,
S.
,
Martin
,
R.
,
Olding
,
R.
,
Petricola
,
D.
,
Powar
,
N.
, and
Sebastian
,
J.
,
2005
, “
An Automated Ultrasonic System for Inspection of Aircraft Turbine Engine Components
,”
Insight - Non-Destructive Testing and Condition Monitoring
,
47
(
3
), pp.
157
162
. 10.1784/insi.47.3.157.61317
11.
Guan
,
X.
, and
He
,
J.
,
2019
, “
Life Time Extension of Turbine Rotating Components Under Risk Constraints: A State-of-the-Art Review and Case Study
,”
Int. J. Fatigue
,
129
, p.
104799
. 10.1016/j.ijfatigue.2018.08.003
12.
Guan
,
X.
,
He
,
J.
,
Rasselkorde
,
E. M.
,
Zhang
,
J.
,
Abbasi
,
W. A.
, and
Zhou
,
S. K.
,
2014
, “
Probabilistic Fatigue Life Prediction and Structural Reliability Evaluation of Turbine Rotors Integrating an Automated Ultrasonic Inspection System
,”
J. Nondestr. Eval.
,
33
(
3
), pp.
51
61
. 10.1007/s10921-013-0202-z
13.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2005
, “
Detection of Structural Damage From the Local Temporal Coherence of Diffuse Ultrasonic Signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
10
), pp.
1769
1782
. 10.1109/TUFFC.2005.1561631
14.
Giurgiutiu
,
V.
,
Zagrai
,
A.
, and
Jing Bao
,
J.
,
2016
, “
Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring
,”
Struct. Health Monit.
,
1
(
1
), pp.
41
61
. 10.1177/147592170200100104
15.
Fei
,
Y.
,
Royer
,
R. L.
, and
Rose
,
J. L.
,
2009
, “
Ultrasonic Guided Wave Imaging Techniques in Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
21
(
3
), pp.
377
384
. 10.1177/1045389X09356026
16.
Ahmad
,
R.
,
Kundu
,
T.
, and
Placko
,
D.
,
2005
, “
Modeling of Phased Array Transducers
,”
J. Acoust. Soc. Am.
,
117
(
4
), pp.
1762
1776
. 10.1121/1.1835506
17.
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
Ultrasonic Arrays for Non-Destructive Evaluation: A Review
,”
NDT&E Int.
,
39
(
7
), pp.
525
541
. 10.1016/j.ndteint.2006.03.006
18.
Zheng
,
F.
,
Li
,
Y.
,
Hsu
,
H. S.
,
Liu
,
C.
,
Tat Chiu
,
C.
,
Lee
,
C.
,
Ham Kim
,
H.
, and
Shung
,
K. K.
,
2012
, “
Acoustic Trapping with a High Frequency Linear Phased Array
,”
Appl. Phys. Lett.
,
101
(
21
), p.
214104
. 10.1063/1.4766912
19.
Kurz
,
J. H.
,
Jüngert
,
A.
,
Dugan
,
S.
,
Dobmann
,
G.
, and
Boller
,
C.
,
2013
, “
Reliability Considerations of NDT by Probability of Detection (POD) Determination Using Ultrasound Phased Array
,”
Eng. Fail. Anal.
,
35
, pp.
609
617
. 10.1016/j.engfailanal.2013.06.008
20.
Guan
,
X.
,
Zhang
,
J.
,
Zhou
,
S. K.
,
Rasselkorde
,
E. M.
, and
Abbasi
,
W. A.
,
2014
, “
Post-Processing of Phased-Array Ultrasonic Inspection Data With Parallel Computing for Nondestructive Evaluation
,”
J. Nondestr. Eval.
,
33
(
3
), pp.
342
351
. 10.1007/s10921-013-0219-3
21.
Song
,
S.-J.
,
Shin
,
H. J.
, and
Jang
,
Y. H.
,
2002
, “
Development of an Ultra Sonic Phased Array System for Nondestructive Tests of Nuclear Power Plant Components
,”
Nucl. Eng. Des.
,
214
(
1–2
), pp.
151
161
. 10.1016/S0029-5493(02)00024-9
22.
Canhui
,
C.
, and
Regtien
,
P. P. L.
,
1993
, “
Accurate Digital Time-of-Flight Measurement Using Self-Interference
,”
IEEE Trans. Instrum. Meas.
,
42
(
6
), pp.
990
994
. 10.1109/19.245651
23.
Newman
,
P. G.
, and
Rozycki
,
G. S.
,
1998
, “
The History of Ultrasound
,”
Surg. Clin. North Am.
,
78
(
2
), pp.
179
195
. 10.1016/S0039-6109(05)70308-X
24.
Meksen
,
M. T.
,
Boudraa
,
B.
,
Drai
,
R.
, and
Boudraa
,
M.
,
2010
, “
Automatic Crack Detection and Characterization During Ultrasonic Inspection
,”
J. Nondestr. Eval.
,
29
(
3
), pp.
169
174
. 10.1007/s10921-010-0074-4
25.
Camacho
,
J.
,
Atehortua
,
D.
,
Cruza
,
J. F.
,
Brizuela
,
J.
, and
Ealo
,
J.
,
2018
, “
Ultrasonic Crack Evaluation by Phase Coherence Processing and TFM and its Application to Online Monitoring in Fatigue Tests
,”
NDT&E Int.
,
93
, pp.
164
174
. 10.1016/j.ndteint.2017.10.007
26.
Li
,
C.
,
Pain
,
D.
,
Wilcox
,
P. D.
, and
Drinkwater
,
B. W.
,
2013
, “
Imaging Composite Material Using Ultrasonic Arrays
,”
NDT&E Int.
,
53
, pp.
8
17
. 10.1016/j.ndteint.2012.07.006
27.
Sinclair
,
A. N.
,
Fortin
,
J.
,
Shakibi
,
B.
,
Honarvar
,
F.
,
Jastrzebski
,
M.
, and
Moles
,
M. D. C.
,
2010
, “
Enhancement of Ultrasonic Images for Sizing of Defects by Time-of-Flight Diffraction
,”
NDT&E Int.
,
43
(
3
), pp.
258
264
. 10.1016/j.ndteint.2009.12.003
28.
Guan
,
X.
,
He
,
J.
, and
Rasselkorde
E. M.
,
2015
, “
A Time-Domain Synthetic Aperture Ultrasound Imaging Method for Material Flaw Quantification With Validations on Small-Scale Artificial and Natural Flaws
,”
Ultrasonics
,
56
, pp.
487
496
. 10.1016/j.ultras.2014.09.018
29.
Fan
,
H.
,
Zhu
,
H.
,
Zhao
,
X.
,
Zhang
,
J.
,
Wu
,
D.
, and
Han
,
Q.
,
2017
, “
Ultrasonic Image Reconstruction Based on Maximum Likelihood Expectation Maximization for Concrete Structural Information
,”
Comput. Electr. Eng.
,
62
, pp.
293
301
. 10.1016/j.compeleceng.2017.02.014
30.
Brizuela
,
J.
,
Camacho
,
J.
,
Cosarinsky
,
G.
,
Iriarte
,
J. M.
, and
Cruza
,
J. F.
,
2019
, “
Improving Elevation Resolution in Phased-Array Inspections for NDT
,”
NDT&E Int.
,
101
, pp.
1
16
. 10.1016/j.ndteint.2018.09.002
31.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2008
, “
Defect Characterization Using an Ultrasonic Array to Measure the Scattering Coefficient Matrix
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
10
), pp.
2254
2265
. 10.1109/TUFFC.924
32.
Prager
,
J.
,
Kitze
,
J.
,
Acheroy
,
C.
,
Brackrock
,
D.
,
Brekow
,
G.
, and
Kreutzbruck
,
M.
,
2012
, “
SAFT and TOFD—A Comparative Study of Two Defect Sizing Techniques on a Reactor Pressure Vessel Mock-Up
,”
J. Nondestr. Eval.
,
32
(
1
), pp.
1
13
. 10.1007/s10921-012-0153-9
33.
Peng
,
C.
,
Bai
,
L.
,
Zhang
,
J.
, and
Drinkwater
,
B. W.
,
2018
, “
The Sizing of Small Surface-Breaking Fatigue Cracks Using Ultrasonic Arrays
,”
NDT&E Int.
,
99
, pp.
64
71
. 10.1016/j.ndteint.2018.06.005
34.
Vilar
,
R.
,
Zapata
,
J.
, and
Ruiz
,
R.
,
2009
, “
An Automatic System of Classification of Weld Defects in Radiographic Images
,”
NDT&E Int.
,
42
(
5
), pp.
467
476
. 10.1016/j.ndteint.2009.02.004
35.
Guan
,
X.
,
Zhang
,
J.
,
Rasselkorde
,
E. M.
,
Abbasi
,
W. A.
, and
Kevin Zhou
,
S.
,
2014
, “
Material Damage Diagnosis and Characterization for Turbine Rotors Using Three-Dimensional Adaptive Ultrasonic NDE Data Reconstruction Techniques
,”
Ultrasonics
,
54
(
2
), pp.
516
525
. 10.1016/j.ultras.2013.07.019
36.
Hernández
,
Á
,
Ureña
,
J.
,
Mazo
,
M.
,
García
,
J. J.
,
Jiménez
,
A.
, and
Álvarez
,
F. J.
,
2007
, “
Reduction of Blind Zone in Ultrasonic Transmitter/Receiver Transducers
,”
Sens. Actuators, A
,
133
(
1
), pp.
96
103
. 10.1016/j.sna.2006.03.008
37.
Goyal
,
B.
,
Dogra
,
A.
,
Agrawal
,
S.
, and
Sohi
,
B. S.
,
2018
, “
Two-Dimensional Gray Scale Image Denoising via Morphological Operations in NSST Domain & Bitonic Filtering
,”
Future Gener. Comput. Syst.
,
82
, pp.
158
175
. 10.1016/j.future.2017.12.034
38.
Jain
,
A. K.
,
1989
,
Fundamentals of Digital Image Processing
,
Prentice Hall
,
Englewood Cliffs, NJ
.
39.
Joel
,
T.
, and
Sivakumar
,
R.
,
2018
, “
An Extensive Review on Despeckling of Medical Ultrasound Images Using Various Transformation Techniques
,”
Appl. Acoust.
,
138
, pp.
18
27
. 10.1016/j.apacoust.2018.03.023
40.
Alaknanda
,
Anand
,
R. S.
, and
Kumar
,
P.
,
2006
, “
Flaw Detection in Radiographic Weld Images Using Morphological Approach
,”
NDT&E Int.
,
39
(
1
), pp.
29
33
. 10.1016/j.ndteint.2005.05.005
41.
Haralick
,
R. M.
, and
Shapiro
,
L. G.
,
1992
,
Computer and Robot Vision
, Vol.
1
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.