Abstract

For the non-destructive inspection of carbon fiber-reinforced plastic (CFRP), lasers can be used to generate ultrasonic waves. It is important to optimize the wavelength of the laser to ensure the intense excitation of a usable propagating mode. Real CFRP components used in the construction of airplanes and automobiles are often coated with several types of resin to protect against weathering. These resin layers change the excitation of the ultrasonic waves. Thus, the optimum laser wavelength may be changed by the coating resin. In this paper, we investigated the excitation of ultrasonic waves in a resin-coated CFRP plate using different laser wavelengths. We conducted experiments to convert the laser wavelength using periodically poled LiNbO3 (PPLN) devices. By injecting mid-infrared laser to a coated sample, we observed excited ultrasonic waves using a laser Doppler vibrometer. We found that transparent resins significantly increase the amplitude of the first-arriving longitudinal wave. Furthermore, when the laser was strongly absorbed in the surface layer, the excitation of longitudinal waves was suppressed. These results were clarified by a one-dimensional model of the thermal generation of ultrasonic waves. We concluded that a laser passing through a resin layer is a viable candidate for the effective inspection of coated CFRP by laser ultrasonic waves.

References

References
1.
Aviation Week & Space Technology
,
2005
,
Market Supplement, S1
,
March
14
.
2.
Mix
,
P. E.
,
2005
,
Introduction to Nondestructive Testing: A Training Guide
,
John Wiley & Sons
,
Hoboken, NJ
.
3.
Giurgiutiu
,
V.
,
2014
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,
Elsevier
,
New York
.
4.
Scruby
,
C. B.
, and
Drain
,
L. E.
,
1990
,
Laser Ultrasonics Techniques and Applications
,
Taylor & Francis Group
,
New York
.
5.
Dubois
,
M.
, and
Drake
,
T. E.
,
2011
, “
Evolution of Industrial Laser-Ultrasonic Systems for the Inspection of Composites
,”
Nondestr. Test. Eval.
,
26
(
3–4
), pp.
213
228
.10.1080/10589759.2011.573552
6.
Yashiro
,
S.
,
Takatsubo
,
J.
, and
Toyama
,
N.
,
2007
, “
An NDT Technique for Composite Structures Using Visualized Lamb-Wave Propagation
,”
Compos. Sci. Technol.
,
67
(
15–16
), pp.
3202
3208
. 10.1016/j.compscitech.2007.04.006
7.
Yashiro
,
S.
,
Toyama
,
N.
,
Takatsubo
,
J.
, and
Shiraishi
,
T.
,
2010
, “
Laser-Generation Based Imaging of Ultrasonic Wave Propagation on Welded Steel Plates and Its Application to Defect Detection
,”
Mater. Trans.
,
51
(
11
), pp.
2069
2075
.10.2320/matertrans.M2010204
8.
Takatsubo
,
J.
,
Wang
,
B.
,
Tsuda
,
H.
, and
Toyama
,
N.
,
2007
, “
Generation Laser Scanning Method for the Visualization of Ultrasounds Propagating on a 3-D Object With an Arbitrary Shape
,”
J. Solid Mech. Mater. Eng.
,
1
(
12
), pp.
1405
1411
. 10.1299/jmmp.1.1405
9.
Soltani
,
P.
, and
Akbareian
,
N.
,
2014
, “
Finite Element Simulation of Laser Generated Ultrasound Waves in Aluminum Plates
,”
Latin Am. J. Solid Struct.
,
11
(
10
), pp.
1761
1776
. 10.1590/S1679-78252014001000004
10.
Liu
,
W.
, and
Hong
,
J. W.
,
2015
, “
Modeling of Three-Dimensional Lamb Wave Propagation Excited by Laser Pulses
,”
Ultrasonics
,
55
, pp.
113
122
.10.1016/j.ultras.2014.07.006
11.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
The Interaction of Lamb Waves With Delaminations in Composite Laminates
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2240
2246
.10.1121/1.407495
12.
Dubois
,
M.
,
Lorraine
,
P. W.
,
Filkins
,
R. J.
,
Drake,
T. E.
,
Yawn
,
K. R.
, and
Chuang
,
S.-Y.
,
2002
, “
Experimental Verification of the Effects of Optical Wavelength on the Amplitude of Laser Generated Ultrasound in Polymer-Matrix Composites
,”
Ultrasonics
,
40
(
1–8
), pp.
809
812
. 10.1016/S0041-624X(02)00215-9
13.
Dubois
,
M.
,
Lorraine
,
P. W.
,
Filkins
,
R. J.
, and
Drake
,
T. E.
,
2001
, “
Experimental Comparison Between Optical Spectroscopy and Laser-Ultrasound Generation in Polymer–Matrix Composites
,”
Appl. Phys. Lett.
,
79
(
12
), pp.
1813
1815
.10.1063/1.1400776
14.
Dubois
,
M.
,
Choquet
,
M.
,
Monchalin
,
J. P.
,
Enguehard
,
F.
, and
Bertrand
,
L.
,
1993
, “
Absolute Optical Absorption Spectra in Graphite Epoxy by Fourier Transform Infrared Photoacoustic Spectroscopy
,”
Opt. Eng.
,
32
(
9
), pp.
2255
2260
. 10.1117/12.145067
15.
Hatano
,
H.
,
Watanabe
,
M.
,
Kitamura
,
K.
,
Naito
,
M.
,
Yamawaki,
H.
, and
Slater
,
R.
,
2015
, “
Mid IR Pulsed Light Source for Laser Ultrasonic Testing of Carbon-Fiber-Reinforced Plastic
,”
J. Opt.
,
17
(
9
), p.
094011
.10.1088/2040-8978/17/9/094011
16.
Kusano
,
M.
,
Hatano
,
H.
,
Watanabe
,
M.
,
Takekawa
,
S.
,
Yamawaki
,
H.
,
Oguchi
,
K.
, and
Enoki
,
M.
,
2018
, “
Mid-Infrared Pulsed Laser Ultrasonic Testing for Carbon Fiber Reinforced Plastics
,”
Ultrasonics
,
84
, pp.
310
318
. 10.1016/j.ultras.2017.11.015
17.
Ishizuki
,
H.
, and
Taira
,
T.
,
2005
, “
High-Energy Quasi-Phase Matched Optical-Parametric Oscillation in a Periodically Poled MgO:LiNbO3 Device With 5 mm × 5 mm Aperture
,”
Opt. Lett.
,
30
(
21
), pp.
2918
2920
. 10.1364/OL.30.002918
18.
McDonald
,
F. A.
,
1990
, “
On the Precursor in Laser-Generated Ultrasound Waveforms in Metals
,”
Appl. Phys. Lett.
,
56
(
3
), pp.
230
232
. 10.1063/1.102839
19.
Sanderson
,
T.
,
Ume
,
C.
, and
Jarzynski
,
J.
,
1998
, “
Longitudinal Wave Generation in Laser Ultrasonics
,”
Ultrasonics
,
35
(
8
), pp.
553
561
. 10.1016/S0041-624X(97)00157-1
20.
Rose
,
L. R. F.
,
1984
, “
Point-Source Representation for Laser-Generated Ultrasound
,”
J. Acoust. Soc. Am.
,
75
(
3
), pp.
723
732
. 10.1121/1.390583
21.
Dubois
,
M.
,
Enguehard
,
F.
, and
Bertrand
,
L.
,
1994
, “
Analytical One-Dimensional Model to Study the Ultrasonic Precursor Generated by a Laser
,”
Phys. Rev. E
,
50
(
2
), pp.
1548
1551
. 10.1103/PhysRevE.50.1548
You do not currently have access to this content.