Abstract

Due to harsh operating environments in underground coal seams, the key components (e.g., gear pairs and bearings) in the power transmission systems of coal cutters suffer from extreme wear and functional damages. To guarantee the safe and reliable operation of the coal cutters, it is important to monitor the condition of their transmission systems and detect possible faults in a timely manner. A challenging task here is to diagnose multiple concurrent faults. A literature review indicates that the current interests lie on the decoupling of multiple co-existing faults and that the very limited work has been done to deal with the dependence/correlation between the fault signals. To address this issue, this work extends our previous work on gear crack detection using the bounded component analysis (BCA) and proposes an improved BCA-based approach for decoupling hybrid faults with high dependence/correlation in coal cutter transmission systems. The proposed approach incorporates the Vold–Kalman order tracking and spectral kurtosis into an improved BCA framework (OTBCA-SK). Owing to the uniform sampling of order tracking, the influence of background noise and rotational speed variation on vibration signals can be effectively reduced. Since BCA is capable of handling vibration sources that are statistically dependent, OTBCA-SK can decouple both independent and dependent source signals. As a result, the vibration sources excited by hybrid faults, although maybe dependent/correlated, can be fully decoupled into single-fault vibration source signals. Three specially designed case studies were used to evaluate the effectiveness of the proposed OTBCA-SK approach in decoupling hybrid gear faults. The analysis results demonstrate better performance of hybrid fault decoupling using OTBCA-SK than that of three representative techniques, i.e., Erdogan's BCA (E-BCA), joint approximate diagonalization of eigen matrices (JADE) and fast independent component analysis (FastICA). These case studies also suggest that the proposed OTBCA-SK approach can retain the physical meaning of the original vibration and is hence suitable for hybrid fault diagnosis in practical applications.

References

References
1.
Jiang
,
Y.
,
Zhu
,
H.
,
Li
,
Z.
, and
Peng
,
Z.
,
2016
, “
The Nonlinear Dynamics Response of Cracked Gear System in a Coal Cutter Taking Environmental Multi-Frequency Excitation Forces Into Consideration
,”
Nonlinear Dyn.
,
84
(
1
), pp.
203
222
. 10.1007/s11071-015-2409-2
2.
Wang
,
K.
,
Li
,
Y.
,
Su
,
Z.
,
Guan
,
R.
,
Lu
,
Y.
, and
Yuan
,
S.
,
2019
, “
Nonlinear Aspects of “Breathing” Crack-Disturbed Plate Waves: 3-D Analytical Modeling With Experimental Validation
,”
Int. J. Mech. Sci.
,
159
, pp.
140
150
. 10.1016/j.ijmecsci.2019.05.036
3.
Jiang
,
Y.
,
Zhu
,
H.
,
Malekian
,
R.
, and
Ding
,
C.
,
2019
, “
An Improved Quantitative Recurrence Analysis Using Artificial Intelligence Based Image Processing Applied to Sensor Measurements
,”
Concurr. Comput. Pract. Exper.
,
31
(
10
), p.
e4858
. 10.1002/cpe.4858
4.
Irfan
,
M.
,
Saad
,
N.
,
Alwadie
,
A.
,
Awais
,
M.
,
Sheikh
,
M. A.
,
Glowacz
,
A.
, and
Kumar
,
V.
,
2019
, “
An Automated Feature Extraction Algorithm for Diagnosis of Gear Faults
,”
J. Failure Anal. Prev.
,
19
(
1
), pp.
98
105
. 10.1007/s11668-018-0573-7
5.
Guan
,
R.
,
Lu
,
Y.
,
Wang
,
K.
, and
Su
,
Z.
,
2019
, “
Fatigue Crack Detection in Pipes With Multiple Mode Nonlinear Guided Waves
,”
Struct. Health Monit.
,
18
(
1
), pp.
180
192
. 10.1177/1475921718791134
6.
Glowacz
,
A.
,
2019
, “
Fault Diagnosis of Single-Phase Induction Motor Based on Acoustic Signals
,”
Mech. Syst. Signal Process.
,
117
, pp.
65
80
. 10.1016/j.ymssp.2018.07.044
7.
Huan
,
Q.
,
Chen
,
M.
,
Su
,
Z.
, and
Li
,
F.
,
2019
, “
A High-Resolution Structural Health Monitoring System Based on SH Wave Piezoelectric Transducers Phased Array
,”
Ultrasonics
,
97
, pp.
29
37
. 10.1016/j.ultras.2019.04.005
8.
Qian
,
P.
,
2015
, “
Fault Diagnosis and Reliability Analysis for Transmission System of Shearer Cutting Part
,” Ph.D. thesis,
China University of Mining and Technology
,
Xuzhou, China
.
9.
Glowacz
,
A.
,
Glowacz
,
W.
,
Glowacz
,
Z.
, and
Kozik
,
J.
,
2018
, “
Early Fault Diagnosis of Bearing and Stator Faults of the Single-Phase Induction Motor Using Acoustic Signals
,”
Measurement
,
113
, pp.
1
9
. 10.1016/j.measurement.2017.08.036
10.
Qiao
,
Z.
,
Lei
,
Y.
, and
Li
,
N.
,
2019
, “
Applications of Stochastic Resonance to Machinery Fault Detection: A Review and Tutorial
,”
Mech. Syst. Signal Process.
,
122
, pp.
502
536
. 10.1016/j.ymssp.2018.12.032
11.
Duan
,
Z.
,
Wu
,
T.
,
Guo
,
S.
,
Shao
,
T.
,
Malekian
,
R.
, and
Li
,
Z.
,
2018
, “
Development and Trend of Condition Monitoring and Fault Diagnosis of Multi-Sensors Information Fusion for Rolling Bearings: A Review
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
803
819
. 10.1007/s00170-017-1474-8
12.
Collacott
,
R. A.
,
1975
, “
Condition Monitoring by Sound Analysis
,”
Non-Destr. Test.
,
8
, pp.
245
248
. 10.1016/0029-1021(75)90044-4
13.
Randall
,
R. B.
,
1975
, “
Gearbox Fault Diagnosis Using Cepstrum Analysis
,”
4th World Congress on the Theory of Machines and Mechanisms
,
Tyne, UK
,
Sept. 8–12
, pp.
169
174
.
14.
Braun
,
S.
,
1975
, “
Signal Analysis for Rotating Machinery Vibrations
,”
Pattern Recognit.
,
7
, pp.
81
86
. 10.1016/0031-3203(75)90017-5
15.
Randall
,
R. B.
,
2011
,
Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications
,
1st ed.
,
John Wiley & Sons
,
Chichester
.
16.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
, pp.
3
10
. 10.1016/0301-679X(84)90076-8
17.
Aherwar
,
A.
, and
Khalid
,
S.
,
2012
, “
Vibration Analysis Techniques for Gearbox Diagnostic: A Review
,”
Int. J. Adv. Eng. Technol.
,
3
, pp.
4
12
.
18.
Li
,
Z.
,
Jiang
,
Y.
,
Wang
,
X.
, and
Peng
,
Z.
,
2016
, “
Multi-Mode Separation and Nonlinear Feature Extraction of Hybrid Gear Failures in Coal Cutters Using Adaptive Nonstationary Vibration Analysis
,”
Nonlinear Dyn.
,
84
, pp.
295
310
. 10.1007/s11071-015-2505-3
19.
Zhang
,
Z.
,
Liu
,
M.
,
Liao
,
Y.
,
Su
,
Z.
, and
Xiao
,
Y.
,
2018
, “
Contact Acoustic Nonlinearity (CAN)-Based Continuous Monitoring of Bolt Loosening: Hybrid Use of High-Order Harmonics and Spectral Sidebands
,”
Mech. Syst. Signal Process.
,
103
, pp.
280
294
. 10.1016/j.ymssp.2017.10.009
20.
Wang
,
T.
,
Han
,
Q.
,
Chu
,
F.
, and
Feng
,
Z.
,
2019
, “
Vibration Based Condition Monitoring and Fault Diagnosis of Wind Turbine Planetary Gearbox: A Review
,”
Mech. Syst. Signal Process.
,
126
, pp.
662
685
. 10.1016/j.ymssp.2019.02.051
21.
Wang
,
Y.
,
Peter
,
W. T.
,
Tang
,
B.
,
Qin
,
Y.
,
Deng
,
L.
,
Huang
,
T.
, and
Xu
,
G.
,
2019
, “
Order Spectrogram Visualization for Rolling Bearing Fault Detection Under Speed Variation Conditions
,”
Mech. Syst. Signal Process.
,
122
, pp.
580
596
. 10.1016/j.ymssp.2018.12.037
22.
Li
,
Y.
,
Feng
,
K.
,
Liang
,
X.
, and
Zuo
,
M. J.
,
2019
, “
A Fault Diagnosis Method for Planetary Gearboxes Under Non-Stationary Working Conditions Using Improved Vold-Kalman Filter and Multi-Scale Sample Entropy
,”
J. Sound Vib.
,
439
, pp.
271
286
. 10.1016/j.jsv.2018.09.054
23.
Wang
,
G.
,
He
,
Z.
,
Chen
,
X.
, and
Lai
,
Y.
,
2013
, “
Basic Tesearch on Machinery Fault Diagnosis—What Is the Prescription
,”
J. Mech. Eng.
,
49
, pp.
63
69
. 10.3901/JME.2013.01.063
24.
Li
,
Z.
,
Jiang
,
Y.
,
Hu
,
C.
, and
Peng
,
Z.
,
2016
, “
Recent Progress on Decoupling Diagnosis of Hybrid Failures in Gear Transmission Systems Using Vibration Sensor Signal: A Review
,”
Measurement
,
90
, pp.
4
19
. 10.1016/j.measurement.2016.04.036
25.
Li
,
Z.
,
Jiang
,
Y.
,
Guo
,
Q.
,
Hu
,
C.
, and
Peng
,
Z.
,
2018
, “
Multi-Dimensional Variational Mode Decomposition for Bearing-Crack Detection in Wind Turbines With Large Driving-Speed Variations
,”
Renew. Energ.
,
116
, pp.
55
73
. 10.1016/j.renene.2016.12.013
26.
Dai
,
J.
,
Tang
,
J.
,
Shao
,
F.
,
Huang
,
S.
, and
Wang
,
Y.
,
2019
, “
Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder
,”
Appl. Sci.
,
9
(
13
), p.
2743
. 10.3390/app9132743
27.
Jia
,
Z.
,
Liu
,
Z.
,
Vong
,
C. M.
, and
Pecht
,
M.
,
2019
, “
A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images
,”
IEEE Access
,
7
, pp.
12348
12359
. 10.1109/ACCESS.2019.2893331
28.
Wu
,
C.
,
Jiang
,
P.
,
Ding
,
C.
,
Feng
,
F.
, and
Chen
,
T.
,
2019
, “
Intelligent Fault Diagnosis of Rotating Machinery Based on One-Dimensional Convolutional Neural Network
,”
Comput. Ind.
,
108
, pp.
53
61
. 10.1016/j.compind.2018.12.001
29.
Fuan
,
W.
,
Hongkai
,
J.
,
Haidong
,
S.
,
Wenjing
,
D.
, and
Shuaipeng
,
W.
,
2017
, “
An Adaptive Deep Convolutional Neural Network for Rolling Bearing Fault Diagnosis
,”
Meas. Sci. Technol.
,
28
(
9
), p.
095005
. 10.1088/1361-6501/aa6e22
30.
He
,
M.
, and
He
,
D.
,
2019
, “
A New Hybrid Deep Signal Processing Approach for Bearing Fault Diagnosis Using Vibration Signals
,”
Neurocomputing
.
31.
Hanachi
,
H.
,
Liu
,
J.
,
Kim
,
I. Y.
, and
Mechefske
,
C. K.
,
2019
, “
Hybrid Sequential Fault Estimation for Multi-Mode Diagnosis of Gas Turbine Engines
,”
Mech. Syst. Signal Process.
,
115
, pp.
255
268
. 10.1016/j.ymssp.2018.05.054
32.
Wang
,
H.
,
Peng
,
M. J.
,
Hines
,
J. W.
,
Zheng
,
G. Y.
,
Liu
,
Y. K.
, and
Upadhyaya
,
B. R.
,
2019
, “
A Hybrid Fault Diagnosis Methodology With Support Vector Machine and Improved Particle Swarm Optimization for Nuclear Power Plants
,”
ISA Trans.
.
33.
Zhang
,
X.
,
Zhao
,
J.
,
Zhang
,
X.
,
Ni
,
X.
,
Li
,
H.
, and
Sun
,
F.
,
2019
, “
A Novel Hybrid Compound Fault Pattern Identification Method for Gearbox Based on NIC, MFDFA and WOASVM
,”
J. Mech. Sci. Technol.
,
33
(
3
), pp.
1097
1113
. 10.1007/s12206-019-0209-1
34.
Wang
,
X. B.
,
Yang
,
Z. X.
, and
Yan
,
X. A.
,
2017
, “
Novel Particle Swarm Optimization-Based Variational Mode Decomposition Method for the Fault Diagnosis of Complex Rotating Machinery
,”
IEEE/ASME Trans. Mechatronics
,
23
(
1
), pp.
68
79
. 10.1109/TMECH.2017.2787686
35.
Li
,
B.
,
Zhang
,
P. L.
,
Tian
,
H.
,
Mi
,
S. S.
,
Liu
,
D. S.
, and
Ren
,
G. Q.
,
2011
, “
A New Feature Extraction and Selection Scheme for Hybrid Fault Diagnosis of Gearbox
,”
Expert Syst. Appl.
,
38
(
8
), pp.
10000
10009
. 10.1016/j.eswa.2011.02.008
36.
Lyu
,
X.
,
Hu
,
Z.
,
Zhou
,
H.
, and
Wang
,
Q.
,
2019
, “
Application of Improved MCKD Method Based on QGA in Planetary Gear Compound Fault Diagnosis
,”
Measurement
,
139
, pp.
236
248
. 10.1016/j.measurement.2019.02.071
37.
Zhou
,
Q.
,
Yan
,
P.
,
Liu
,
H.
, and
Xin
,
Y.
,
2019
, “
A Hybrid Fault Diagnosis Method for Mechanical Components Based on Ontology and Signal Analysis
,”
J. Intell. Manuf.
,
30
(
4
), pp.
1693
1715
. 10.1007/s10845-017-1351-1
38.
Dhamande
,
L. S.
, and
Chaudhari
,
M. B.
,
2018
, “
Compound Gear-Bearing Fault Feature Extraction Using Statistical Features Based on Time-Frequency Method
,”
Measurement
,
125
, pp.
63
77
. 10.1016/j.measurement.2018.04.059
39.
Wu
,
F.
, and
Meng
,
G.
,
2006
, “
Compound Rub Malfunctions Feature Extraction Based on Full-Spectrum Cascade Analysis and SVM
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
2007
2021
. 10.1016/j.ymssp.2005.10.004
40.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2011
, “
EEMD Method and WNN for Fault Diagnosis of Locomotive Roller Bearings
,”
Expert Syst. Appl.
,
38
(
6
), pp.
7334
7341
. 10.1016/j.eswa.2010.12.095
41.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2008
, “
Application of a Novel Hybrid Intelligent Method to Compound Fault Diagnosis of Locomotive Roller Bearings
,”
ASME J. Vib. Acoust.
,
130
, p.
034501
. 10.1115/1.2890396
42.
Li
,
Z.
,
Yan
,
X.
,
Wang
,
X.
, and
Peng
,
Z.
,
2016
, “
Detection of Gear Cracks in a Complex Gearbox of Wind Turbines Using Supervised Bounded Component Analysis of Vibration Signals Collected From Multi-Channel Sensors
,”
J. Sound Vib.
,
371
, pp.
406
433
. 10.1016/j.jsv.2016.02.021
43.
Sayed-Mouchaweh
,
M.
,
2019
, “Decentralized Modular Approach for Fault Diagnosis of a Class of Hybrid Dynamic Systems: Application to a Multicellular Converter,”
Predictive Maintenance in Dynamic Systems
,
Springer
,
Cham
, pp.
461
483
.
44.
Li
,
W.
, and
Zhao
,
C.
,
2019
, “
Hybrid Fault Characteristics Decomposition Based Probabilistic Distributed Fault Diagnosis for Large-Scale Industrial Processes
,”
Control Eng. Pract.
,
84
, pp.
377
388
. 10.1016/j.conengprac.2018.12.009
45.
Jiang
,
Y.
,
Hua
,
Z.
, and
Li
,
Z.
,
2016
, “
A New Compound Faults Detection Method for Rolling Bearings Based on Empirical Wavelet Transform and Chaotic Oscillator
,”
Chaos Solitons Fractals
,
89
, pp.
8
19
. 10.1016/j.chaos.2015.09.007
46.
Yuan
,
J.
,
He
,
Z.
, and
Zi
,
Y.
,
2010
, “
Separation and Extraction of Electromechanical Equipment Compound Faults Using Lifting Multiwavelets
,”
J. Mech. Eng.
,
46
, pp.
79
85
. 10.3901/JME.2010.01.079
47.
Li
,
Z.
,
Jiang
,
Y.
,
Hu
,
C.
, and
Peng
,
Z.
,
2017
, “
Difference Equation Based Empirical Mode Decomposition With Application to Separation Enhancement of Multi-Fault Vibration Signals
,”
J. Differ. Equ. Appl.
,
23
(
1–2
), pp.
457
467
. 10.1080/10236198.2016.1254206
48.
Chen
,
J.
,
Zi
,
Y.
,
He
,
Z.
, and
Wang
,
X.
,
2012
, “
Construction of Adaptive Redundant Multiwavelet Packet and Its Application to Compound Faults Detection of Rotating Machinery
,”
Sci. China Ser. E Technol. Sci.
,
55
, pp.
2083
2090
. 10.1007/s11431-012-4846-1
49.
Sun
,
H.
,
He
,
Z.
,
Zi
,
Y.
,
Yuan
,
J.
,
Wang
,
X.
,
Chen
,
J.
, and
He
,
S.
,
2014
, “
Multiwavelet Transform and Its Applications in Mechanical Fault Diagnosis—A Review
,”
Mech. Syst. Signal Process
,
43
, pp.
1
24
. 10.1016/j.ymssp.2013.09.015
50.
Wang
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2010
, “
Enhancement of Signal Denoising and Multiple Fault Signatures Detecting in Rotating Machinery Using Dual-Tree Complex Wavelet Transform
,”
Mech. Syst. Signal Process
,
24
, pp.
119
137
. 10.1016/j.ymssp.2009.06.015
51.
Li
,
R.
,
Yu
,
D.
,
Chen
,
X.
, and
Liu
,
J.
,
2014
, “
A Compound Fault Diagnosis Method for Gearboxes Based on Chirplet Path Pursuit and EEMD
,”
J. Vib. Shock
,
33
, pp.
51
56
.
52.
Chen
,
X.
,
Yu
,
D.
, and
Li
,
R.
,
2013
, “
A Compound Faults Diagnosis Method for Variational-Speed Gearbox Based on Order Tracking Demodulation Spectrum
,”
J. Vib. Eng.
,
26
, pp.
951
959
.
53.
Zhang
,
C.
,
Liu
,
Y.
,
Wan
,
F.
,
Chen
,
B.
, and
Liu
,
J.
,
2019
, “
Isolation and Identification of Compound Faults in Rotating Machinery via Adaptive Deep Filtering Technique
,”
IEEE Access
.
54.
Chegini
,
S. N.
,
Bagheri
,
A.
, and
Najafi
,
F.
,
2019
, “
Application of a New EWT-Based Denoising Technique in Bearing Fault Diagnosis
,”
Measurement
,
144
, pp.
275
297
.
55.
Xu
,
Y.
,
Chen
,
J.
,
Ma
,
C.
,
Zhang
,
K.
, and
Cao
,
J.
,
2019
, “
Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing
,”
Entropy
,
21
(
5
), p.
490
. 10.3390/e21050490
56.
Teng
,
W.
,
Ding
,
X.
,
Cheng
,
H.
,
Han
,
C.
,
Liu
,
Y.
, and
Mu
,
H.
,
2019
, “
Compound Faults Diagnosis and Analysis for a Wind Turbine Gearbox via a Novel Vibration Model and Empirical Wavelet Transform
,”
Renew. Energ.
,
136
, pp.
393
402
. 10.1016/j.renene.2018.12.094
57.
Wan
,
S.
, and
Peng
,
B.
,
2019
, “
The FERgram: A Rolling Bearing Compound Fault Diagnosis Based on Maximal Overlap Discrete Wavelet Packet Transform and Fault Energy Ratio
,”
J. Mech. Sci. Technol.
,
33
(
1
), pp.
157
172
. 10.1007/s12206-018-1216-3
58.
Gu
,
X.
,
Yang
,
S.
,
Liu
,
Y.
,
Deng
,
F.
, and
Ren
,
B.
,
2018
, “
Compound Faults Detection of the Rolling Element Bearing Based on the Optimal Complex Morlet Wavelet Filter
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
10
), pp.
1786
1801
. 10.1177/0954406217710673
59.
Hong
,
L.
,
Liu
,
X.
, and
Zuo
,
H.
,
2018
, “
Compound Fault Diagnosis of Rotating Machinery Based on Adaptive Maximum Correlated Kurtosis Deconvolution and Customized Multiwavelet Transform
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115007
. 10.1088/1361-6501/aadefe
60.
Miao
,
Y.
,
Zhao
,
M.
, and
Lin
,
J.
,
2019
, “
Identification of Mechanical Compound-Fault Based on the Improved Parameter-Adaptive Variational Mode Decomposition
,”
ISA Trans.
,
84
, pp.
82
95
. 10.1016/j.isatra.2018.10.008
61.
Wan
,
S.
,
Zhang
,
X.
, and
Dou
,
L.
,
2018
, “
Compound Fault Diagnosis of Bearings Using Improved Fast Spectral Kurtosis With VMD
,”
J. Mech. Sci. Technol.
,
32
(
11
), pp.
5189
5199
. 10.1007/s12206-018-1017-8
62.
Wang
,
Z.
,
Wang
,
J.
,
Cai
,
W.
,
Zhou
,
J.
,
Du
,
W.
,
Wang
,
J.
,
He
,
G.
, and
He
,
H.
,
2019
, “
Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis
,”
Complexity
,
2019
.
63.
Zhang
,
Z.
,
Zhang
,
X.
,
Zhang
,
P.
,
Wu
,
F.
, and
Li
,
X.
,
2018
, “
Compound Fault Extraction Method via Self-Adaptively Determining the Number of Decomposition Layers of the Variational Mode Decomposition
,”
Rev. Sci. Instrum.
,
89
(
8
), p.
085110
. 10.1063/1.5037565
64.
Zhao
,
D.
,
Cheng
,
W.
,
Gao
,
R. X.
,
Yan
,
R.
, and
Wang
,
P.
,
2019
, “
Generalized Vold-Kalman Filtering for Nonstationary Compound Faults Feature Extraction of Bearing and Gear
,”
IEEE Trans. Instrum. Meas.
.
65.
Hu
,
C.
,
Wang
,
Y.
, and
Bai
,
T.
,
2019
, “
A Tensor-Based Approach for Identification of Multi-Channel Bearing Compound Faults
,”
IEEE Access
,
7
, pp.
38213
38223
. 10.1109/ACCESS.2019.2906784
66.
Li
,
H.
,
Zheng
,
H.
, and
Tang
,
L.
,
2013
, “
Application of Morphological Component Analysis to Gearbox Compound Fault Diagnosis
,”
J. Vib. Meas. Diagn.
,
33
(
4
), pp.
620
626
.
67.
Chen
,
X.
,
Yu
,
D.
, and
Li
,
R.
,
2014
, “
Analysis of Gearbox Compound Fault Vibration Signal Using Morphological Component Analysis
,”
J. Mech. Eng.
,
50
(
3
), pp.
108
115
. 10.3901/JME.2014.03.108
68.
Chen
,
X.
,
Yu
,
D.
, and
Li
,
R.
,
2014
, “
Compound Fault Diagnosis Method for Gearbox Based on Morphological Component Analysis and Order Tracking
,”
J. Aerospace Power
,
29
(
1
), pp.
225
232
.
69.
Hao
,
Y.
,
Song
,
L.
,
Cui
,
L.
, and
Wang
,
H.
,
2019
, “
A Three-Dimensional Geometric Features-Based SCA Algorithm for Compound Faults Diagnosis
,”
Measurement
,
134
, pp.
480
491
. 10.1016/j.measurement.2018.10.098
70.
Li
,
N.
,
Huang
,
W.
,
Guo
,
W.
,
Gao
,
G.
, and
Zhu
,
Z.
,
2019
, “
Multiple Enhanced Sparse Decomposition for Gearbox Compound Fault Diagnosis
,”
IEEE Trans. Instrum. Meas
.
71.
Yi
,
Z.
,
Pan
,
N.
, and
Guo
,
Y.
,
2018
, “
Mechanical Compound Faults Extraction Based on Improved Frequency Domain Blind Deconvolution Algorithm
,”
Mech. Syst. Signal Process.
,
113
, pp.
180
188
. 10.1016/j.ymssp.2017.06.028
72.
Zhang
,
J.
,
Zhang
,
Z.
,
Zhu
,
G.
,
Chen
,
B.
,
Cheng
,
W.
, and
He
,
Z.
,
2014
, “
Multi-Unit Deflation Constraint Independent Component Analysis and Its Application to Source Contribution Estimation
,”
Jixie Gongcheng Xuebao/J. Mech. Eng.
,
50
(
5
), pp.
57
64
. 10.3901/JME.2014.05.057
73.
Bobin
,
J.
,
Moudden
,
Y.
,
Starck
,
J. L.
, and
Elad
,
M.
,
2006
, “
Morphological Diversity and Source Separation
,”
IEEE Signal Process. Lett.
,
13
(
7
), pp.
409
412
. 10.1109/LSP.2006.873141
74.
Cruces
,
S.
,
2010
, “
Bounded Component Analysis of Linear Mixtures: A Criterion of Minimum Convex Perimeter
,”
IEEE Trans. Signal Process.
,
58
(
4
), pp.
2141
2154
. 10.1109/TSP.2010.2040685
75.
Erdogan
,
A. T.
,
2013
, “
A Class of Bounded Component Analysis Algorithms for the Separation of Both Independent and Dependent Sources
,”
IEEE Trans. Signal Process.
,
61
(
22
), pp.
5730
5743
. 10.1109/TSP.2013.2280115
76.
Aguilera
,
P.
,
Cruces
,
S.
,
Durán-Díaz
,
I.
,
Sarmiento
,
A.
, and
Mandic
,
D. P.
,
2013
, “
Blind Separation of Dependent Sources With a Bounded Component Analysis Deflationary Algorithm
,”
IEEE Signal Process. Lett.
,
20
(
7
), pp.
709
712
. 10.1109/LSP.2013.2259814
77.
Cruces
,
S.
,
2015
, “
Bounded Component Analysis of Noisy Underdetermined and Overdetermined Mixtures
,”
IEEE Trans. Signal Process.
,
63
, pp.
2279
2294
. 10.1109/TSP.2015.2404312
78.
Cruces
,
S.
, and
Durán-Díaz
,
I.
,
2014
, “
The Minimum Risk Principle That Underlies the Criteria of Bounded Component Analysis
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
5
), pp.
964
981
. 10.1109/TNNLS.2014.2329318
79.
Inan
,
H. A.
, and
Erdogan
,
A. T.
,
2014
, “
Convolutive Bounded Component Analysis Algorithms for Independent and Dependent Source Separation
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
4
), pp.
697
708
. 10.1109/TNNLS.2014.2320817
80.
Inan
,
H. A.
, and
Erdogan
,
A. T.
,
2014
, “
A Convolutive Bounded Component Analysis Framework for Potentially Nonstationary Independent and/or Dependent Sources
,”
IEEE Trans. Signal Process.
,
63
(
1
), pp.
18
30
. 10.1109/TSP.2014.2367472
81.
Pham
,
D. T.
,
2000
, “
Blind Separation of Instantaneous Mixture of Sources Based on Order Statistics
,”
IEEE Trans. Signal Process.
,
48
(
2
), pp.
363
375
. 10.1109/78.823964
82.
Vold
,
H.
, and
Leuridan
,
J.
,
1995
, “
High Resolution Order Tracking at Extreme Slew Rates Using Kalman Tracking Filters
,”
Shock Vib.
,
2
(
6
), pp.
507
515
. 10.1155/1995/919402
83.
Herlufsen
,
H.
,
Gade
,
S.
,
Konstantin-Hansen
,
H.
, and
Vold
,
H.
,
1999
, “
Characteristics of the Vold-Kalman Order-Tracking Filter
,”
2000 IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Istanbul, Turkey
,
June 5–9
, pp.
3895
3898
. http://dx.doi.org/10.1109/ICASSP.2000.860254
84.
Randall
,
R. B.
,
Antoni
,
J.
, and
Chobsaard
,
S.
,
2001
, “
The Relationship Between Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cyclostationary Machine Signals
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
945
962
. 10.1006/mssp.2001.1415
85.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
. 10.1016/j.ymssp.2004.09.002
86.
Gardner
,
W. A.
,
1986
, “
The Spectral Correlation Theory of Cyclostationary Time-Series
,”
Signal Process.
,
11
(
1
), pp.
13
36
. 10.1016/0165-1684(86)90092-7
87.
Ye
,
H.
,
2008
, “
Research on Blind Source Separation of the Vibration Signals of Mechanical System
,” Ph.D. thesis,
Zhejiang University
,
Hangzhou, China
.
88.
Kerschen
,
G.
,
Poncelet
,
F.
, and
Golinval
,
J. C.
,
2007
, “
Physical Interpretation of Independent Component Analysis in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1561
1575
. 10.1016/j.ymssp.2006.07.009
89.
Poncelet
,
F.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Verhelst
,
D.
,
2007
, “
Output-Only Modal Analysis Using Blind Source Separation Techniques
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2335
2358
. 10.1016/j.ymssp.2006.12.005
90.
Coats
,
M. D.
, and
Randall
,
R. B.
,
2014
, “
Single and Multi-Stage Phase Demodulation Based Order-Tracking
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
86
117
. 10.1016/j.ymssp.2013.09.016
91.
Coats
,
M.
, and
Randall
,
R.
,
2015
, “
Order Tracking Under Run-Up and Run-Down Conditions
,”
Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science
, Vol.
21
,
P.
Pennacchi
, ed.,
Springer
,
Cham
.
92.
Randall
,
R.
, and
Smith
,
W.
,
2016
, “
New Cepstral Methods for the Diagnosis of Gear and Bearing Faults Under Variable Speed Conditions
,”
Proceedings of the 23rd International Congress on Sound and Vibration
,
Athens, Greece
,
July 10–16
, pp.
1
8
.
93.
Pan
,
M. C.
, and
Lin
,
Y. F.
,
2006
, “
Further Exploration of Vold–Kalman-Filtering Order Tracking With Shaft-Speed Information—I: Theoretical Part, Numerical Implementation and Parameter Investigations
,”
Mech. Syst. Signal Process.
,
20
(
5
), pp.
1134
1154
. 10.1016/j.ymssp.2005.01.005
94.
Pan
,
M. C.
, and
Lin
,
Y. F.
,
2006
, “
Further Exploration of Vold–Kalman-Filtering Order Tracking With Shaft-Speed Information—II: Engineering Applications
,”
Mech. Syst. Signal Process.
,
20
(
6
), pp.
1410
1428
. 10.1016/j.ymssp.2005.01.007
95.
Cardoso
,
J. F.
,
1999
, “
High-Order Contrasts for Independent Component Analysis
,”
Neural Comput.
,
11
(
1
), pp.
157
192
. 10.1162/089976699300016863
96.
McFadden
,
P. D.
,
1986
, “
Detecting Fatigue Cracks in Gears by Amplitude and Phase Demodulation of the Meshing Vibration
,”
J. Vib. Acoust. Stress Reliab. Des.
,
108
(
2
), pp.
165
170
. 10.1115/1.3269317
97.
Yesilyurt
,
I.
,
2003
, “
Fault Detection and Location in Gears by the Smoothed Instantaneous Power Spectrum Distribution
,”
NDT&E Int.
,
36
(
7
), pp.
535
542
. 10.1016/S0963-8695(03)00043-4
98.
Gilles
,
J.
,
2013
, “
Empirical Wavelet Transform
,”
IEEE Trans. Signal Process.
,
61
(
16
), pp.
3999
4010
. 10.1109/TSP.2013.2265222
99.
Fan
,
X.
, and
Zuo
,
M. J.
,
2006
, “
Gearbox Fault Detection Using Hilbert and Wavelet Packet Transform
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
966
982
. 10.1016/j.ymssp.2005.08.032
You do not currently have access to this content.