This article presents a numerical formulation and the experimental validation of the dynamic interaction between highly nonlinear solitary waves generated along a mono-periodic array of spherical particles and rails in a point contact with the array. A general finite element model of rails was developed and coupled to a discrete particle model able to predict the propagation of the solitary waves along a L-shaped array located perpendicular and in contact with the web of the rail. The models were validated experimentally by testing a 0.9-m long and a 2.4-m long rail segments subjected to compressive load. The scope of the study was the development of a new nondestructive evaluation technique able to estimate the stress in continuous welded rails and eventually to infer the temperature at which the longitudinal stress in the rail is zero. The numerical findings presented in this article demonstrate that certain features, such as the amplitude and time of flight, of the solitary waves are affected by the axial stress. The experimental results validated the numerical predictions and warrant the validation of the nondestructive evaluation system against real rails.

References

References
1.
Tunna Inc
.,
2000
,
Vertical Rail Stiffness Equipment (VERSE) Trials
,
Tunna Inc.
,
Pueblo, CO
.
2.
Wegner
,
A.
, “
Prevention of Track Buckling and Rail Fracture by Non-Destructive Testing of the Neutral Temperature in cw-Rails
,”
Proceedings International Heavy Haul Conference
, pp.
557
564
.
3.
Zhu
,
X.
, and
Lanza di Scalea
,
F.
,
2016
, “
Sensitivity to Axial Stress of Electro-Mechanical Impedance Measurements
,”
Exp. Mech.
,
56
(
9
), pp.
1599
1610
.
4.
Phillips
,
R.
,
Lanza di Scalea
,
F.
, and
Zhu
,
X.
,
2012
, “
The Influence of Stress on Electro-Mechanical Impedance Measurements in Rail Steel
,”
Mater. Eval.
,
70
(
10
), pp.
1213
1218
.
5.
Hurlebaus
,
S.
,
2011
, “
Determination of longitudinal stress in rails
,” Safety IDEA Project 15, Transportation Research Board, 01363276.
6.
Szelazek
,
J.
,
1998
, “
Monitoring of Thermal Stresses in Continuously Welded Rails With Ultrasonic Technique
,”
Proceeding Annual DGZfP Conference ’97
,
Dresden, Germany
.
7.
Nucera
,
C.
, and
Lanza di Scalea
,
F.
,
2014
, “
Nonlinear Wave Propagation in Constrained Solids Subjected to Thermal Loads
,”
J. Sound Vib.
,
333
(
2
), pp.
541
554
.
8.
Nucera
,
C.
, and
Lanza di Scalea
,
F.
,
2014
, “
Nondestructive Measurement of Neutral Temperature in Continuous Welded Rails by Nonlinear Ultrasonic Guided Waves
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2561
2574
.
9.
Nucera
,
C.
,
Phillips
,
R.
,
Lanza di Scalea
,
F.
,
Fateh
,
M.
, and
Carr
,
G.
,
2013
, “
RAIL-NT System for the In-Situ Measurement of Neutral Temperature in CWR: Results From Laboratory and Field Test
,”
J. Transp. Res. Board
,
01470560
(
13-3511
), p.
13
.
10.
Lanza di Scalea
,
F.
, and
Nucera
,
C.
,
2018
, “
Nonlinear Ultrasonic Testing for Non-Destructive Measurement of Longitudinal Thermal Stresses in Solids
,” U.S. Patent No. US20150377836A1.
11.
Bagheri
,
A.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2014
, “
Determination of the Neutral Temperature of Slender Beams by Using Nonlinear Solitary Waves
,”
J. Eng. Mech.
,
141
(
6
), p.
04014163
.
12.
Bagheri
,
A.
,
La Malfa Ribolla
,
E.
,
Rizzo
,
P.
,
Al-Nazer
,
L.
, and
Giambanco
,
G.
,
2015
, “
On the Use of l-Shaped Granular Chains for the Assessment of Thermal Stress in Slender Structures
,”
Exp. Mech.
,
55
(
3
), pp.
543
558
.
13.
Bagheri
,
A.
,
La Malfa Ribolla
,
E.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2016
, “
On the Coupling Dynamics Between Thermally Stressed Beams and Granular Chains
,”
Arch. Appl. Mech.
,
86
(
3
), pp.
541
556
.
14.
Bagheri
,
A.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2016
, “
A Numerical Study on the Optimization of a Granular Medium to Infer the Axial Stress in Slender Structures
,”
Mech. Adv. Mater. Struct.
,
23
(
10
), pp.
1131
1143
.
15.
Nasrollahi
,
A.
, and
Rizzo
,
P.
,
2018
, “
Axial Stress Determination Using Highly Nonlinear Solitary Waves
,”
J. Acoust. Soc. Am.
,
144
(
4
), pp.
2201
2212
.
16.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
(
156–171
), p.
110
.
17.
Leggett
,
D.
,
1960
, “
Theory of Elasticity. Landau LD and Lifshitz EM, Translated From Russian by Sykes JB and Reid WH. Pergamon Press, London, 1959. 134, pp. Illustrated. 40s
,”
Aeronaut. J.
,
64
(
591
), pp.
176
177
.
18.
Nesterenko
,
V.
,
2013
,
Dynamics of Heterogeneous Materials
,
Springer Science & Business Media
,
New York
.
19.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(
1
), p.
016603
.
20.
Herbold
,
E. B.
,
2008
,
Optimization of the Dynamic Behavior of Strongly Nonlinear Heterogeneous Materials
,
University of California
,
San Diego, CA
.
21.
Nesterenko
,
V.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phys.
,
24
(
5
), pp.
733
743
.
22.
Yang
,
J.
,
Silvestro
,
C.
,
Sangiorgio
,
S. N.
,
Borkowski
,
S. L.
,
Ebramzadeh
,
E.
,
De Nardo
,
L.
, and
Daraio
,
C.
,
2011
, “
Nondestructive Evaluation of Orthopaedic Implant Stability in THA Using Highly Nonlinear Solitary Waves
,”
Smart Mater. Struct.
,
21
(
1
), p.
012002
.
23.
Ni
,
X.
, and
Rizzo
,
P.
,
2012
, “
Highly Nonlinear Solitary Waves for the Inspection of Adhesive Joints
,”
Exp. Mech.
,
52
(
9
), pp.
1493
1501
.
24.
Ni
,
X.
,
Rizzo
,
P.
,
Yang
,
J.
,
Katri
,
D.
, and
Daraio
,
C.
,
2012
, “
Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves
,”
NDT&E Int.
,
52
, pp.
76
85
.
25.
Yang
,
J.
,
Sangiorgio
,
S. N.
,
Borkowski
,
S. L.
,
Silvestro
,
C.
,
De Nardo
,
L.
,
Daraio
,
C.
, and
Ebramzadeh
,
E.
,
2012
, “
Site-Specific Quantification of Bone Quality Using Highly Nonlinear Solitary Waves
,”
ASME J. Biomech. Eng.
,
134
(
10
), p.
101001
.
26.
Cai
,
L.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2013
, “
On the Coupling Mechanism Between Nonlinear Solitary Waves and Slender Beams
,”
Int. J. Solids Struct.
,
50
(
25
), pp.
4173
4183
.
27.
Cai
,
L.
,
Yang
,
J.
,
Rizzo
,
P.
,
Ni
,
X.
, and
Daraio
,
C.
,
2013
, “
Propagation of Highly Nonlinear Solitary Waves in a Curved Granular Chain
,”
Granular Matter
,
15
(
3
), pp.
357
366
.
28.
Li
,
F.
,
Zhao
,
L.
,
Tian
,
Z.
,
Yu
,
L.
, and
Yang
,
J.
,
2013
, “
Visualization of Solitary Waves via Laser Doppler Vibrometry for Heavy Impurity Identification in a Granular Chain
,”
Smart Mater. Struct.
,
22
(
3
), p.
035016
.
29.
Ni
,
X.
,
Cai
,
L.
, and
Rizzo
,
P.
,
2013
, “
A Comparative Study on Three Different Transducers for the Measurement of Nonlinear Solitary Waves
,”
Sensors
,
13
(
1
), pp.
1231
1246
.
30.
Rizzo
,
P.
,
Ni
,
X.
,
Nassiri
,
S.
, and
Vandenbossche
,
J.
,
2014
, “
A Solitary Wave-Based Sensor to Monitor the Setting of Fresh Concrete
,”
Sensors
,
14
(
7
), pp.
12568
12584
.
31.
Yang
,
J.
,
Sangiorgio
,
S. N.
,
Borkowski
,
S. L.
,
Ebramzadeh
,
E.
, and
Daraio
,
C.
,
2014
, “
Site-Specific Diagnostic Evaluation of Hard Biological Tissues Using Solitary Waves
,”
Mechanics of Biological Systems and Materials
, Vol.
4
,
F.
Barthelat
,
P.
Zavattieri
,
C. S.
Korach
,
B. C.
Prorok
, and
K.
Jane Grande-Allen
, eds.,
Springer
,
New York
, pp.
185
189
.
32.
Kim
,
E.
,
Restuccia
,
F.
,
Yang
,
J.
, and
Daraio
,
C.
,
2015
, “
Solitary Wave-Based Delamination Detection in Composite Plates Using a Combined Granular Crystal Sensor and Actuator
,”
Smart Mater. Struct.
,
24
(
12
), p.
125004
.
33.
Deng
,
W.
,
Nasrollahi
,
A.
,
Rizzo
,
P.
, and
Li
,
K.
,
2016
, “
On the Reliability of a Solitary Wave Based Transducer to Determine the Characteristics of Some Materials
,”
Sensors
,
16
(
1
), pp.
5
.
34.
Rizzo
,
P.
,
Nasrollahi
,
A.
,
Deng
,
W.
, and
Vandenbossche
,
J.
,
2016
, “
Detecting the Presence of High Water-to-Cement Ratio in Concrete Surfaces Using Highly Nonlinear Solitary Waves
,”
Appl. Sci.
,
6
(
4
), p.
104
.
35.
Nasrollahi
,
A.
,
Deng
,
W.
,
Rizzo
,
P.
,
Vuotto
,
A.
, and
Vandenbossche
,
J. M.
,
2017
, “
Nondestructive Testing of Concrete Using Highly Nonlinear Solitary Waves
,”
Nondestructive Test. Eval.
,
32
(
4
), pp.
381
399
.
36.
Nasrollahi
,
A.
,
Rizzo
,
P.
, and
Orak
,
M. S.
,
2018
, “
Numerical and Experimental Study on the Dynamic Interaction Between Highly Nonlinear Solitary Waves and Pressurized Balls
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031007
.
37.
Schiffer
,
A.
,
Alkhaja
,
A. I.
,
Yang
,
J.
,
Esfahani
,
E. N.
, and
Kim
,
T. Y.
,
2017
, “
Interaction of Highly Nonlinear Solitary Waves With Elastic Solids Containing a Spherical Void
,”
Int. J. Solids Struct.
,
118
, pp.
204
212
.
38.
Schiffer
,
A.
,
Lee
,
D.
,
Kim
,
E.
, and
Kim
,
T. Y.
,
2018
, “
Interaction of Highly Nonlinear Solitary Waves With Rigid Polyurethane Foams
,”
Int. J. Solids Struct.
,
152
, pp.
39
50
.
39.
Kerr
,
A. D.
,
1978
, “
Analysis of Thermal Track Buckling in the Lateral Plane
,”
Acta Mech.
,
30
(
1–2
), pp.
17
50
.
40.
Donley
,
M. G.
, and
Kerr
,
A. D.
,
1987
, “
Thermal Buckling of Curved Railroad Tracks
,”
Int. J. Non-Linear Mech.
,
22
(
3
), pp.
175
192
.
41.
Kerr
,
A. D.
,
1978
, “
Lateral Buckling of Railroad Tracks due to Constrained Thermal Expansions—A Critical Survey
,”
Railroad Track Mechanics and Technology
,
A. D.
Kerr
, ed.,
Elsevier
,
New York
, pp.
141
169
.
42.
Lim
,
N.-H.
,
Park
,
N.-H.
, and
Kang
,
Y.-J.
,
2003
, “
Stability of Continuous Welded Rail Track
,”
Comput. Struct.
,
81
(
22–23
), pp.
2219
2236
.
43.
Kerr
,
A. D.
,
1980
, “
An Improved Analysis for Thermal Track Buckling
,”
Int. J. Non-Linear Mech.
,
15
(
2
), pp.
99
114
.
44.
Kish
,
A.
,
2011
,
On the Fundamentals of Track Lateral Resistance
,
American Railway Engineering and Maintenance of Way Association (AREMA)
,
Minneapolis, MN
.
45.
Martínez
,
I. N.
,
Sanchis
,
I. V.
,
Fernández
,
P. M.
, and
Franco
,
R. I.
,
2015
, “
Analytical Model for Predicting the Buckling Load of Continuous Welded Rail Tracks
,”
Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit
,
229
(
5
), pp.
542
552
.
46.
Lim
,
N.-H.
,
Han
,
S.-Y.
,
Han
,
T.-H.
, and
Kang
,
Y.-J.
,
2008
, “
Parametric Study on Stability of Continuous Welded Rail Track-Ballast Resistance and Track Irregularity
,”
Steel Struct.
,
8
, pp.
171
181
.
47.
Kish
,
A.
,
Samavedam
,
G.
, and
Jeong
,
D.
,
1982
,
Analysis of Thermal Buckling Tests on US Railroads
,
Federal Railroad Administration, Office of Research and Development
,
Washington, DC
.
48.
Kish
,
A.
, and
Samavedam
,
G.
,
1991
, “
Dynamic Buckling of Continuous Welded Rail Track: Theory, Tests, and Safety Concepts
,”
Transp. Res. Record
,
1289
, pp.
23
38
.
49.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier
,
Oxford, UK
.
50.
Chopra
,
A. K.
,
2017
, “
Dynamics of Structures. Theory and Applications to Earthquake Engineering
,”
Printice Hall Series I Civil Engineering and Engineering Mechanics
,
5th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
51.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.
52.
Rizzo
,
P.
, and
Lanza di Scalea
,
F.
,
2003
, “
Effect of Frequency on the Acoustoelastic Response of Steel Bars
,”
Exp. Tech.
,
27
(
6
), pp.
40
43
.
53.
Lanza di Scalea
,
F.
,
Rizzo
,
P.
, and
and Seible
,
F.
,
2003
, “
Stress Measurement and Defect Detection in Steel Strands by Guided Stress Waves
,”
J. Mater. Civ. Eng.
,
15
(
3
), pp.
219
227
.
54.
Rizzo
,
P.
, and
Lanza di Scalea
,
F.
,
2004
, “
Load Measurement and Health Monitoring in Cable Stays via Guided Wave Magnetostrictive Ultrasonics
,”
Mater. Eval.
,
62
(
10
), pp.
1057
1065
.
55.
Kish
,
A.
, and
Samavedam
,
G.
,
2005
, “
Improved Destressing of Continuous Welded Rail for Better Management of Rail Neutral Temperature
,”
Transp. Res. Record
,
1916
(
1
), pp.
56
65
.
You do not currently have access to this content.