Heat-resistant composites, such as ceramic matrix composites and heat-resistant carbon fiber reinforced plastics (CFRPs), are expected to be used for aircraft engine parts. The development of reliable heat-resistant composite materials requires the use of nondestructive test techniques for evaluating the progression of damage during material testing at elevated temperatures. Furthermore, structural health monitoring (SHM) technologies that operate under harsh environments are expected to be realized for monitoring heat-resistant composite structures. To provide potential solutions for the establishment of such technologies, this research developed a heat-resistant ultrasonic sensor based on a regenerated fiber-optic Bragg grating (RFBG). First, we fabricated an RFBG by annealing a normal fiber-optic Bragg gratings (FBG) sensor. Because the RFBG exhibits high heat resistance at temperatures of 1000 °C, the sensor achieved stable ultrasonic detection at an elevated temperature. In addition, we attempted to use a π-phase-shifted FBG (PSFBG) as the seed grating to construct an ultrasonic sensor with enhanced performance. As a result, the regenerated phase-shifted fiber-optic Bragg grating (R(PS)FBG) sensor possessed a very short effective gauge length and achieved a broad frequency response to ultrasonic waves with frequencies greater than 1.5 MHz. The broadband detectability enables the R(PS)FBG sensor to acquire an accurate response to ultrasonic waves. Hence, we believe the regenerated Bragg grating-based ultrasonic sensors can contribute to establishing an effective nondestructive evaluation method for composite materials, thereby enabling a structural health monitoring system for a composite-made structure operating under extreme high-temperature environments.

References

References
1.
Miyauchi
,
M.
,
Ishida
,
Y.
,
Ogasawara
,
T.
, and
Yokota
,
R.
,
2012
, “
Highly Soluble Phenylethynyl-Terminated Imide Oligomers Based on KAPTON-Type Backbone Structures for Carbon Fiber-Reinforced Composites With High Heat Resistance
,”
Polym. J.
,
45
(
6
), p.
594
.
2.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.
3.
Toyama
,
N.
,
Noda
,
J.
, and
Okabe
,
T.
,
2003
, “
Quantitative Damage Detection in Cross-Ply Laminates Using Lamb Wave Method
,”
Compos. Sci. Technol.
,
63
(
10
), pp.
1473
1479
.
4.
Morscher
,
G. N.
,
1999
, “
Modal Acoustic Emission of Damage Accumulation in a Woven SiC/SiC Composite
,”
Compos. Sci. Technol.
,
59
(
5
), pp.
687
697
.
5.
Breede
,
F.
,
Koch
,
D.
,
Maillet
,
E.
, and
Morscher
,
G. N.
,
2015
, “
Modal Acoustic Emission of Damage Accumulation in C/C–SiC Composites With Different Fiber Architectures
,”
Ceram. Int.
,
41
(
9
), pp.
12087
12098
.
6.
Diamanti
,
K.
, and
Soutis
,
C.
,
2010
, “
Structural Health Monitoring Techniques for Aircraft Composite Structures
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
342
352
.
7.
Hudson
,
T. B.
, and
Yuan
,
F.-G.
,
2018
, “
Automated In-Process Cure Monitoring of Composite Laminates Using a Guided Wave-Based System With High-Temperature Piezoelectric Transducers
,”
ASME J. Nondestr. Eval. Diagn. Prognostics Eng. Syst.
,
1
(
2
), p.
021008
.
8.
Scalea
,
F. L.
, and
Salamone
,
S.
,
2008
, “
Temperature Effects in Ultrasonic Lamb Wave Structural Health Monitoring Systems
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
161
174
.
9.
Jiang
,
X.
,
Kim
,
K.
,
Zhang
,
S.
,
Johnson
,
J.
, and
Salazar
,
G.
,
2013
, “
High-Temperature Piezoelectric Sensing
,”
Sensors
,
14
(
1
), pp.
144
169
.
10.
Giurgiutiu
,
V.
,
Xu
,
B.
, and
Liu
,
W.
,
2010
, “
Development and Testing of High-Temperature Piezoelectric Wafer Active Sensors for Extreme Environments
,”
Struct. Health Monit.
,
9
(
6
), pp.
513
525
.
11.
Kim
,
D. L.
, and
Tomozawa
,
M.
,
2001
, “
Fictive Temperature of Silica Glass Optical Fibers—Re-Examination
,”
J. Non-Cryst. Solids
,
286
(
1–2
), pp.
132
138
.
12.
Shao
,
L. Y.
,
Canning
,
J.
,
Wang
,
T.
,
Cook
,
K.
, and
Tam
,
H. Y.
,
2013
, “
Viscosity of Silica Optical Fibres Characterized Using Regenerated Gratings
,”
Acta Mater.
,
61
(
16
), pp.
6071
6081
.
13.
Sakaguchi
,
S.
, and
Todoroki
,
S.
,
1999
, “
Viscosity of Silica Core Optical Fiber
,”
J. Non-Cryst. Solids
,
244
(
2–3
), pp.
232
237
.
14.
Zhou
,
G.
, and
Sim
,
L. M.
,
2002
, “
Damage Detection and Assessment in Fibre-Reinforced Composite Structures With Embedded Fibre Optic Sensors-Review
,”
Smart Mater. Struct.
,
11
(
6
), p.
925
.
15.
Giurgiutiu
,
V.
,
2016
,
Fiber-Optic Sensors, Structural Health Monitoring of Aerospace Composites
,
Academic Press
,
Oxford
, pp.
249
296
.
16.
Wu
,
Q.
,
Okabe
,
Y.
, and
Yu
,
F.
,
2018
, “
Ultrasonic Structural Health Monitoring Using Fiber Bragg Grating
,”
Sensors
,
18
(
10
), p.
3395
.
17.
Wu
,
Q.
, and
Okabe
,
Y.
,
2012
, “
High-Sensitivity Ultrasonic Phase-Shifted Fiber Bragg Grating Balanced Sensing System
,”
Opt. Express
,
20
(
27
), pp.
28353
28362
.
18.
Erdogan
,
T.
,
1997
, “
Fiber Grating Spectra
,”
J. Lightwave Technol.
,
15
(
8
), pp.
1277
1294
.
19.
Rosenthal
,
A.
,
Razansky
,
D.
, and
Ntziachristos
,
V.
,
2011
, “
High-Sensitivity Compact Ultrasonic Detector Based on a Pi-Phase-Shifted Fiber Bragg Grating
,”
Opt. Lett.
,
36
(
10
), pp.
1833
1835
.
20.
Minardo
,
A.
,
Cusano
,
A.
,
Bernini
,
R.
,
Zeni
,
L.
, and
Giordano
,
M.
,
2005
, “
Response of Fiber Bragg Gratings to Longitudinal Ultrasonic Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
2
), pp.
304
312
.
21.
Qi
,
W.
,
Fengming
,
Y.
,
Yoji
,
O.
, and
Satoshi
,
K.
,
2015
, “
Application of a Novel Optical Fiber Sensor to Detection of Acoustic Emissions by Various Damages in CFRP Laminates
,”
Smart Mater. Struct.
,
24
(
1
), p.
015011
.
22.
Yu
,
F.-M.
,
Okabe
,
Y.
,
Wu
,
Q.
, and
Shigeta
,
N.
,
2016
, “
A Novel Method of Identifying Damage Types in Carbon Fiber-Reinforced Plastic Cross-Ply Laminates Based on Acoustic Emission Detection Using a Fiber-Optic Sensor
,”
Compos. Sci. Technol.
,
135
, pp.
116
122
.
23.
Fokine
,
M.
,
2002
, “
Thermal Stability of Chemical Composition Gratings in Fluorine–Germanium-Doped Silica Fibers
,”
Opt. Lett.
,
27
(
12
), pp.
1016
1018
.
24.
Bandyopadhyay
,
S.
,
Canning
,
J.
,
Stevenson
,
M.
, and
Cook
,
K.
,
2008
, “
Ultrahigh-Temperature Regenerated Gratings in Boron-Codoped Germanosilicate Optical Fiber Using 193 nm
,”
Opt. Lett.
,
33
(
16
), pp.
1917
1919
.
25.
Zhang
,
B.
, and
Kahrizi
,
M.
,
2007
, “
High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication
,”
IEEE Sens. J.
,
7
(
4
), pp.
586
591
.
26.
Canning
,
J.
,
2016
, “
Regeneration, Regenerated Gratings and Composite Glass Properties: The Implications for High Temperature Micro and Nano Milling and Optical Sensing
,”
Measurement
,
79
, pp.
236
249
.
27.
Holmberg
,
P.
,
Laurell
,
F.
, and
Fokine
,
M.
,
2015
, “
Influence of Pre-Annealing on the Thermal Regeneration of Fiber Bragg Gratings in Standard Optical Fibers
,”
Opt. Express
,
23
(
21
), pp.
27520
27535
.
28.
Laffont
,
G.
,
Cotillard
,
R.
, and
Ferdinand
,
P.
,
2013
, “
Multiplexed Regenerated Fiber Bragg Gratings for High-Temperature Measurement
,”
Meas. Sci. Technol.
,
24
(
9
), p.
094010
.
29.
Wang
,
T.
,
Shao
,
L.-Y.
,
Canning
,
J.
, and
Cook
,
K.
,
2013
, “
Temperature and Strain Characterization of Regenerated Gratings
,”
Opt. Lett.
,
38
(
3
), pp.
247
249
.
30.
Chen
,
R.
,
Yan
,
A.
,
Wang
,
Q.
, and
Chen
,
K. P.
,
2014
, “
Fiber-Optic Flow Sensors for High-Temperature Environment Operation Up to 800 °C
,”
Opt. Lett.
,
39
(
13
), pp.
3966
3969
.
31.
Wu
,
Q.
, and
Okabe
,
Y.
,
2012
, “
Ultrasonic Sensor Employing Two Cascaded Phase-Shifted Fiber Bragg Gratings Suitable for Multiplexing
,”
Opt. Lett.
,
37
(
16
), pp.
3336
3338
.
32.
Daniel
,
C. B.
,
Graham
,
T.
,
Brian
,
C.
, and
Wieslaw
,
J. S.
,
2003
, “
Acousto-Ultrasonic Sensing Using Fiber Bragg Gratings
,”
Smart Mater. Struct.
,
12
(
1
), p.
122
.http://iopscience.iop.org/article/10.1088/0964-1726/12/1/314/meta
33.
Yu
,
F.
, and
Okabe
,
Y.
,
2017
, “
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment
,”
Sensors
,
17
(
12
), p.
2908
.
34.
Yu
,
F.
,
Okabe
,
Y.
,
Wu
,
Q.
, and
Shigeta
,
N.
,
2016
, “
Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement of Composites
,”
Smart Mater. Struct.
,
25
(
10
), p.
105033
.
You do not currently have access to this content.