Sometimes, nondestructive evaluation (NDE) or structural health monitoring methods commonly used in engineering structures are used for the betterment of consumer goods. A classic example is the use of sensor systems to monitor the pressure and the quality of car tires. In this paper, we present a nondestructive method to characterize tennis balls. The International Tennis Federation (ITF) specifies which characteristics a tennis ball must have in order to be commercialized. One of these characteristics is bounciness and the standardized method to measure it is the rebound test, where a ball is released from 2.54 m onto a smooth rigid surface and, in order to be approved, the ball must bounce within a certain range. This test can be staged by manufacturers and testing authorities but the equipment necessary to perform it is not readily available to the average consumer. In the study presented in this paper, an empirical method based on the propagation of highly nonlinear solitary waves (HNSWs) is proposed to establish whether a given ball conforms the specifications set by the ITF in terms of bounciness and allowed deformation. The experiments conducted in this study aim to discover a correlation between some features of the waves and the values obtained with the rebound test and the compression test in which the deformation of the ball under a known load is measured. The presence of such correlations could represent a viable alternative to establish the conformity of tennis balls. Based on the empirical evidences collected in this study, a possible new standard is suggested.

References

References
1.
Eshghi
,
A. T.
,
Lee
,
S.
,
Sadoughi
,
M. K.
,
Hu
,
C.
,
Kim
,
Y.-C.
, and
Seo
,
J.-H.
,
2017
, “
Design Optimization Under Uncertainty and Speed Variability for a Piezoelectric Energy Harvester Powering a Tire Pressure Monitoring Sensor
,”
Smart Mater. Struct.
,
26
(
10
), p.
105037
.
2.
Behroozinia
,
P.
,
Taheri
,
S.
, and
Mirzaeifar
,
R.
,
2018
, “
Tire Health Monitoring Using the Intelligent Tire Concept
,”
Struct. Health Monit.
, epub.
3.
Laflamme
,
S.
, and
Geiger
,
R. L.
,
2017
, “
Tire Sensing Method for Enhanced Safety and Controllability of Vehicles
,” U.S. Patent No.
US9815343B1
.https://patents.google.com/patent/US9815343B1/en
4.
Natsagdorj
,
S.
,
Chiang
,
J. Y.
,
Su
,
C.-H.
,
Lin
,
C.-C.
, and
Chen
,
C.-y.
,
2015
, “
Vision-Based Assembly and Inspection System for Golf Club Heads
,”
Rob. Comput.-Integr. Manuf.
,
32
, pp.
83
92
.
5.
Gamache
,
P.
,
Galante
,
A.
,
Seben
,
G.
, and
Elbirt
,
A.
,
2007
, “
Validating Baseball Bat Compliance
,”
Sports Eng.
,
10
(
3
), pp.
157
164
.
6.
Pelczarski
,
N. V.
, and
Huston
,
D. R.
, 2000, “
Cure Monitoring of Composite Laminates Used in the Manufacturing of Snowboards
,”
Proc. SPIE
,
3993
, pp.
228
240
.
7.
ITF Approved Tennis Balls, 2018, “
Classified Surfaces & Recognised Courts—A Guide to Products and Test Methods
,” accessed Oct. 13, 2018, http://www.itftennis.com/media/278130/278130.pdf
8.
Roux
,
A.
, and
Dickerson
,
J.
,
2007
, “
Coefficient of Restitution of a Tennis Ball
,”
Int. School Bangkok (ISB). J. Phys.
,
1
(
1
), p.
7
.http://isjos.org/ISBJOP/index.php?paper=Coefficient+of+Restitution+of+a+Tennis+Ball
9.
Cross
,
R.
,
2011
,
Physics of Baseball & Softball
,
Springer Science & Business Media
,
New York
.
10.
Cross
,
R.
,
1999
, “
Dynamic Properties of Tennis Balls
,”
Sports Eng.
,
2
, pp.
23
34
.
11.
Haron
,
A.
, and
Ismail
,
K.
, 2012, “
Coefficient of Restitution of Sports Balls: A Normal Drop Test
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
36
(
1
), p.
012038
.
12.
Bridge
,
N. J.
,
1998
, “
The Way Balls Bounce
,”
Phys. Educ.
,
33
(
3
), p.
174
.
13.
Hubbard
,
M.
, and
Stronge
,
W.
,
2001
, “
Bounce of Hollow Balls on Flat Surfaces
,”
Sports Eng.
,
4
(
2
), pp.
49
61
.
14.
Andersen
,
T.
,
1999
, “
Collisions in Soccer Kicking
,”
Sports Eng.
,
2
(
2
), pp.
121
125
.
15.
Haake
,
S.
,
Carre
,
M.
, and
Goodwill
,
S.
,
2003
, “
The Dynamic Impact Characteristics of Tennis Balls With Tennis Rackets
,”
J. Sports Sci.
,
21
(
10
), pp.
839
850
.
16.
Goodwill
,
S.
, and
Haake
,
S.
,
2004
, “
Modelling of Tennis Ball Impacts on a Rigid Surface
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
218
(
10
), pp.
1139
1153
.
17.
Nagurka
,
M.
, and
Huang
,
S.
,
2004
, “
A Mass-Spring-Damper Model of a Bouncing Ball
,” IEEE American Control Conference (
ACC
), Boston, MA, June 30–July 2, pp.
499
504
.https://ieeexplore.ieee.org/document/1383652
18.
Wadhwa
,
A.
,
2009
, “
Measuring the Coefficient of Restitution Using a Digital Oscilloscope
,”
Phys. Educ.
,
44
(
5
), p.
517
.
19.
Wadhwa
,
A.
,
2012
, “
Measuring the Rebound Resilience of a Bouncing Ball
,”
Phys. Educ.
,
47
(
5
), p.
620
.
20.
Wadhwa
,
A.
,
2013
, “
Study of the Dynamic Properties and Effects of Temperature Using a Spring Model for the Bouncing Ball
,”
Eur. J. Phys.
,
34
(
3
), p.
703
.
21.
Bagheri
,
A.
, and
Rizzo
,
P.
,
2017
, “
Assessing the Pressure of Tennis Balls Using Nonlinear Solitary Waves: A Numerical Study
,”
Sports Eng.
,
20
(
1
), pp.
53
62
.
22.
Nasrollahi
,
A.
,
Rizzo
,
P.
, and
Orak
,
M. S.
,
2018
, “
Numerical and Experimental Study on the Dynamic Interaction Between Highly Nonlinear Solitary Waves and Pressurized Balls
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031007
.
23.
Deng
,
W.
,
Nasrollahi
,
A.
,
Rizzo
,
P.
, and
Li
,
K.
,
2016
, “
On the Reliability of a Solitary Wave Based Transducer to Determine the Characteristics of Some Materials
,”
Sensors
,
16
(
1
), p.
5
.
24.
Nasrollahi
,
A.
,
Deng
,
W.
,
Rizzo
,
P.
,
Vuotto
,
A.
, and
Vandenbossche
,
J. M.
,
2017
, “
Nondestructive Testing of Concrete Using Highly Nonlinear Solitary Waves
,”
Nondestr. Test. Eval.
,
32
(
4
), pp.
381
399
.
25.
Rizzo
,
P.
,
Nasrollahi
,
A.
,
Deng
,
W.
, and
Vandenbossche
,
J.
,
2016
, “
Detecting the Presence of High Water-to-Cement Ratio in Concrete Surfaces Using Highly Nonlinear Solitary Waves
,”
Appl. Sci.
,
6
(
4
), p.
104
.
26.
Bagheri
,
A.
,
Ribolla
,
E. L. M.
,
Rizzo
,
P.
,
Al-Nazer
,
L.
, and
Giambanco
,
G.
,
2015
, “
On the Use of l-Shaped Granular Chains for the Assessment of Thermal Stress in Slender Structures
,”
Exp. Mech.
,
55
(
3
), pp.
543
558
.
27.
Bagheri
,
A.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2014
, “
Determination of the Neutral Temperature of Slender Beams by Using Nonlinear Solitary Waves
,”
J. Eng. Mech.
,
141
(
6
), p.
04014163
.
28.
Nesterenko
,
V.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phys.
,
24
(
5
), pp.
733
743
.
29.
Lazaridi
,
A.
, and
Nesterenko
,
V.
,
1985
, “
Observation of a New Type of Solitary Waves in a One-Dimensional Granular Medium
,”
J. Appl. Mech. Tech. Phys.
,
26
(
3
), pp.
405
408
.
30.
Nesterenko
,
V.
,
Lazaridi
,
A.
, and
Sibiryakov
,
E.
,
1995
, “
The Decay of Soliton at the Contact of Two “Acoustic Vacuums”
,”
J. Appl. Mech. Tech. Phys.
,
36
(
2
), pp.
166
168
.
31.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(
5
), p.
6104
.
32.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(
Pt 2
), p.
016603
.
33.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.
34.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2005
, “
How Hertzian Solitary Waves Interact With Boundaries in a 1D Granular Medium
,”
Phys. Rev. Lett.
,
94
(
17
), p.
178002
.
35.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2007
, “
Solitary Wave Trains in Granular Chains: Experiments, Theory and Simulations
,”
Granular Matter
,
10
(
1
), pp.
13
20
.
36.
Nesterenko
,
V.
,
Daraio
,
C.
,
Herbold
,
E.
, and
Jin
,
S.
,
2005
, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
(
15
), p.
158702
.
37.
Yang
,
J.
,
Silvestro
,
C.
,
Khatri
,
D.
,
De Nardo
,
L.
, and
Daraio
,
C.
,
2011
, “
Interaction of Highly Nonlinear Solitary Waves With Linear Elastic Media
,”
Phys. Rev. E
,
83
(
4
), p.
046606
.
38.
Berhanu
,
B.
,
Rizzo
,
P.
, and
Ochs
,
M.
,
2013
, “
Highly Nonlinear Solitary Waves for the Assessment of Dental Implant Mobility
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011028
.
39.
Cai
,
L.
,
Rizzo
,
P.
, and
Al-Nazer
,
L.
,
2013
, “
On the Coupling Mechanism Between Nonlinear Solitary Waves and Slender Beams
,”
Int. J. Solids Struct.
,
50
(
25–26
), pp.
4173
4183
.
40.
Schiffer
,
A.
,
Alkhaja
,
A.
,
Yang
,
J.
,
Esfahani
,
E.
, and
Kim
,
T.-Y.
,
2017
, “
Interaction of Highly Nonlinear Solitary wa-Ves With Elastic Solids Containing a Spherical Void
,”
Int. J. Solids Struct.
,
118–119
, pp.
204
212
.
41.
Manciu
,
F. S.
, and
Sen
,
S.
,
2002
, “
Secondary Solitary Wave Formation in Systems With Generalized Hertz Interactions
,”
Phys. Rev. E
,
66
(
Pt. 2
), p.
016616
.
42.
Falcon
,
E.
,
Laroche
,
C.
,
Fauve
,
S.
, and
Coste
,
C.
,
1998
, “
Collision of a 1-D Column of Beads With a Wall
,”
Eur. Phys. J. B-Condens. Matter Complex Syst.
,
5
(
1
), pp.
111
131
.
43.
Ni
,
X.
,
Rizzo
,
P.
,
Yang
,
J.
,
Katri
,
D.
, and
Daraio
,
C.
,
2012
, “
Monitoring the Hydration of Cement Using Highly Nonlinear Solitary Waves
,”
NDT E Int.
,
52
, pp.
76
85
.
44.
Ni
,
X.
, and
Rizzo
,
P.
,
2012
, “
Use of Highly Nonlinear Solitary Waves in Nondestructive Testing
,”
Mater. Eval.
,
70
(
5
), pp.
561
569
.https://ndtlibrary.asnt.org/2012/UseofHighlyNonlinearSolitaryWavesinNondestructiveTesting
45.
Cross
,
R.
,
1999
, “
The Bounce of a Ball
,”
Am. J. Phys.
,
67
(
3
), pp.
222
227
.
46.
Sissler
,
L.
,
2012
, “
Advanced Modelling and Design of a Tennis Ball
,”
Ph.D. thesis
, Loughborough University, Loughborough, UK.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/10073
You do not currently have access to this content.