This paper presents gamma radiation effects on resonant and antiresonant characteristics of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) applications to nuclear-spent fuel storage facilities. The irradiation test was done in a Co-60 gamma irradiator. Lead zirconate titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 225 kGy gamma radiation dose. First, 2 kGy of total radiation dose was achieved with slower radiation rate at 0.1 kGy/h for 20; h then the remaining radiation dose was achieved with accelerated radiation rate at 1.233 kGy/h for 192 h. The total cumulative radiation dose of 225 kGy is equivalent to 256 years of operation in nuclear-spent fuel storage facilities. Electro-mechanical impedance and admittance (EMIA) signatures were measured after each gamma radiation exposure. Radiation-dependent logarithmic sensitivity of PZT-PWAS in-plane and thickness modes resonance frequency ((fR)/(logeRd)) was estimated as 0.244 kHz and 7.44 kHz, respectively; the logarithmic sensitivity of GaPO4-PWAS in-plane and thickness modes resonance frequency was estimated as 0.0629 kHz and 2.454 kHz, respectively. Therefore, GaPO4-PWAS EMIA spectra show more gamma radiation endurance than PZT-PWAS. Scanning electron microscope (SEM) and X-ray diffraction method (XRD) was used to investigate the microstructure and crystal structure of PWAS transducers. From SEM and XRD results, it can be inferred that there is no significant variation in the morphology, the crystal structure, and grain size before and after the irradiation exposure.

References

1.
Michele, S. , 2015, “
Dry Cask Storage-The Basics
,” Wordpress.com, San Francisco, CA., (epub).
2.
NRC News
, 2018, “
Dry Cask Storage
,” Nuclear Regulatory Commission, Washington, DC, accessed Aug. 8, 2018, https://www.nrc.gov/waste/spent-fuel-storage/dry-cask-storage.html
3.
Giurgiutiu
,
V.
,
2014
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
, 2nd ed.,
Academic
,
New York
.
4.
Haider
,
M. F.
, and
Giurgiutiu
,
V.
, 2018, “
A Helmholtz Potential Approach to the Analysis of Guided Wave Generation During Acoustic Emission Events
,”
ASME J. Nondestr. Eval., Diagn. Prognostics Eng. Syst.
,
1
(2), p. 021002.
5.
Haider
,
M. F.
, and
Giurgiutiu
,
V.
,
2017
, “
Analysis of Axis Symmetric Circular Crested Elastic Wave Generated During Crack Propagation in a Plate: A Helmholtz Potential Technique
,”
Int. J. Solids Struct.
,
134
, pp. 130–150.
6.
Zhao
,
X.
,
Gao
,
H.
,
Zhang
,
G.
,
Ayhan
,
B.
,
Yan
,
F.
,
Kwan
,
C.
, and
Rose
,
J. L.
,
2007
, “
Active Health Monitoring of an Aircraft Wing With Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and Growth Monitoring
,”
Smart Mater. Struct.
,
16
(
4
), p.
1208
.
7.
Ciang
,
C. C.
,
Lee
,
J. R.
, and
Bang
,
H. J.
,
2008
, “
Structural Health Monitoring for a Wind Turbine System: A Review of Damage Detection Methods
,”
Meas. Sci. Technol.
,
19
(
12
), p.
122001
.
8.
Park
,
G.
,
Farrar
,
C. R.
,
Rutherford
,
A. C.
, and
Robertson
,
A. N.
,
2006
, “
Piezoelectric Active Sensor Self-Diagnostics Using Electrical Admittance Measurements
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
469
476
.
9.
Bhalla
,
S.
, and
Soh
,
C. K.
,
2004
, “
Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling
,”
J. Aerosp. Eng.
,
17
(
4
), pp.
154
165
.
10.
Newnham
,
R. E.
,
Xu
,
Q. C.
,
Kumar
,
S.
, and
Cross
,
L. E.
,
1990
, “
Smart Ceramics
,”
Ferroelectrics
,
102
(
1
), pp.
259
266
.
11.
Verı́ssimo
,
M. I. S.
,
Mantas
,
P. Q.
,
Senos
,
A. M. R.
,
Oliveira
,
J. A. B. P.
, and
Gomes
,
M. T. S. R.
,
2003
, “
Suitability of PZT Ceramics for Mass Sensors Versus Widespread Used Quartz Crystals
,”
Sens. Actuators B: Chem.
,
95
(
1–3
), pp.
25
31
.
12.
Giurgiutiu
,
V.
,
Xu
,
B.
, and
Liu
,
W.
,
2010
, “
Development and Testing of High-Temperature Piezoelectric Wafer Active Sensors for Extreme Environments
,”
Struct. Health Monit.
,
9
(
6
), pp.
513
525
.
13.
Haines
,
J.
,
Cambon
,
O.
,
Prudhomme
,
N.
,
Fraysse
,
G.
,
Keen
,
D. A.
,
Chapon
,
L. C.
, and
Tucker
,
M. G.
,
2006
, “
High-Temperature, Structural Disorder, Phase Transitions, and Piezoelectric Properties of GaPO4
,”
Phys. Rev. B
,
73
(
1
), p.
014103
.
14.
Reiter
,
C.
,
Krempl
,
P. W.
,
Thanner
,
H.
,
Wallnöfer
,
W.
, and
Worsch
,
P. M.
,
2001
, “
Material Properties of GaPO4 and Their Relevance for Applications
,”
Ann. Chim. Sci. Matér.
,
26
(
1
), pp.
91
94
.
15.
Philippot
,
E.
,
Palmier
,
D.
,
Pintard
,
M.
, and
Goiffon
,
A.
,
1996
, “
A General Survey of Quartz and Quartz-Like Materials: Packing Distortions, Temperature, and Pressure Effects
,”
J. Solid State Chem.
,
123
(
1
), pp.
1
13
.
16.
Krempl
,
P.
,
Schleinzer
,
G.
, and
Wallno
,
W.
,
1997
, “
Gallium Phosphate, GaPO4: A New Piezoelectric Crystal Material for High-Temperature Sensorics
,”
Sens. Actuators A: Phys.
,
61
(
1–3
), pp.
361
363
.
17.
Sindelar
,
R. L.
,
Duncan
,
A. J.
,
Dupont
,
M. E.
,
Lam
,
P.-S.
,
Louthan
,
M. R.
, Jr.
, and
Skidmore
,
T. E.
,
2011
, “
Materials Aging Issues and Aging Management for Extended Storage and Transportation of Spent Nuclear Fuel
,” Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-7116 (SRNL-STI-2011-00005).
18.
Fawzy
,
Y. H. A.
,
Soliman
,
F. A. S.
,
Swidan
,
A.
, and
Abdelmagid
,
A.
,
2008
, “
Characterization and Operation of PZT Ceramic Filters on Gamma-Radiation Environment
,”
The Second All African IRPA Regional Radiation Protection Congress
, Ismailia, Egypt, Apr. 22–26, p. 10.
19.
Yang
,
S. A.
,
Kim
,
B. H.
,
Lee
,
M. K.
,
Lee
,
G. J.
,
Lee
,
N. H.
, and
Bu
,
S. D.
,
2014
, “
Gamma-Ray Irradiation Effects on Electrical Properties of Ferroelectric PbTiO3 and Pb (Zr 0.52 Ti 0.48) O3 Thin Films
,”
Thin Solid Films
,
562
, pp.
185
189
.
20.
Augereau
,
F. P.
, Ferrandis, J. Y. , Villard, J. F. , Fourmentel, D. , Dierckx, M. , and Wagemans, J. ,
2008
, “
Effect of Intense Neutron Dose Radiation on Piezoceramics
,”
J. Acoust. Soc. Am.
,
123
(
5
), p.
3928
.
21.
Kundzins
,
K.
, Zauls, V. , Kundzins, M. , Sternberg, A. , Čakare, L. , Bittner, R. , Humer, K. , and Weber, H. W. ,
2001
, “
Neutron Irradiation Effects on Sol-Gel PZT Thin Films
,”
Ferroelectrics
,
258
(
1
), pp.
285
290
.
22.
Sinclair
,
A. N.
, and
Chertov
,
A. M.
,
2015
, “
Radiation Endurance of Piezoelectric Ultrasonic Transducers–A Review
,”
Ultrasonics
,
57
, pp.
1
10
.
23.
Parks
,
D.
, and
Tittmann
,
B.
,
2014
, “
Radiation Tolerance of Piezoelectric Bulk Single-Crystal Aluminum Nitride
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
61
(
7
), pp.
1216
1222
.
24.
Kulikov
,
D.
, and
Trushin
,
Y.
,
2004
, “
Theoretical Study of Ferroelectric Properties Degradation in Perovskite Ferroelectrics and Anti-Ferroelectrics Under Neutron Irradiation
,”
Ferroelectrics
,
308
(
1
), pp.
5
16
.
25.
Giurgiutiu
,
V.
,
Postolache
,
C.
, and
Tudose
,
M.
,
2016
, “
Radiation, Temperature, and Vacuum Effects on Piezoelectric Wafer Active Sensors
,”
Smart Mater. Struct.
,
25
(
3
), p.
035024
.
26.
Zagrai
,
A. N.
,
2002
, “
Piezoelectric-Wafer Active Sensor Electro-Mechanical Impedance Structural Health Monitoring
,” Doctoral dissertation, University of South Carolina, Columbia, SC.
27.
Haider
,
M. F.
,
Giurgiutiu
,
V.
,
Lin
,
B.
, and
Yu
,
L.
,
2017
, “
Irreversibility Effects in Piezoelectric Wafer Active Sensors After Exposure to High Temperature
,”
Smart Mater. Struct.
,
26
(
9
), p.
095019
.
28.
Kamas
,
T.
,
Poddar
,
B.
,
Lin
,
B.
, and
Yu
,
L. L.
,
2015
, “
Assessment of Temperature Effect in Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,”
Smart Struct. Syst.
,
16
(
5
), pp.
835
851
.
29.
Park
,
G.
,
Kabeya
,
K.
,
Cudney
,
H. H.
, and
Inman
,
D. J.
,
1999
, “
Impedance-Based Structural Health Monitoring for Temperature Varying Applications
,”
JSME Int. J. Ser. A
,
42
(
2
), pp.
249
258
.
30.
Haider
,
M. F.
,
Lin
,
B.
,
Yu
,
L.
, and
Giurgiutiu
,
V.
,
2017
, “
Sensing Capabilities of Piezoelectric Wafer Active Sensors in Extreme Nuclear Environment
,”
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure
, Vol.
10169
, p.
101691Z
.
31.
Sun
,
X.
,
Lin
,
B.
,
Bao
,
J.
,
Giurgiutiu
,
V.
,
Knight
,
T.
,
Lam
,
P. S.
, and
Yu
,
L.
,
2015
, “
Developing a Structural Health Monitoring System for Nuclear Dry Cask Storage Canister
,”
SPIE Smart Structures and Materials, Nondestructive Evaluation and Health Monitoring
, p.
94390N
.
32.
Xu
,
F.
,
Trolier-McKinstry
,
S.
,
Ren
,
W.
,
Xu
,
B.
,
Xie
,
Z. L.
, and
Hemker
,
K. J.
,
2001
, “
Domain Wall Motion and Its Contribution to the Dielectric and Piezoelectric Properties of Lead Zirconate Titanate Films
,”
J. Appl. Phys.
,
89
(
2
), pp.
1336
1348
.
33.
Kamel
,
T. M.
, and
de With
,
G.
,
2008
, “
Grain Size Effect on the Poling of Soft Pb (Zr, Ti)O3 Ferroelectric Ceramics
,”
J. Eur. Ceram. Soc.
,
28
(
4
), pp.
851
861
.
34.
Herbiet
,
R.
,
Robels
,
U.
,
Dederichs
,
H.
, and
Arlt
,
G.
,
1989
, “
Domain Wall and Volume Contributions to Material Properties of PZT Ceramics
,”
Ferroelectrics
,
98
(
1
), pp.
107
121
.
35.
Zhang
,
Q. M.
,
Wang
,
H.
,
Kim
,
N.
, and
Cross
,
L. E.
,
1994
, “
Direct Evaluation of Domain‐Wall and Intrinsic Contributions to the Dielectric and Piezoelectric Response and Their Temperature Dependence on Lead Zirconate‐Titanate Ceramics
,”
J. Appl. Phys.
,
75
(
1
), pp.
454
459
.
36.
Jaffe
,
B.
,
Cook
,
W. R.
, Jr.
, and
Jaffe
,
H.
,
1971
,
Piezoelectric Ceramics
,
Academic Press
,
New York
.
37.
Haider
,
M. F.
,
Lin
,
B.
,
Yu
,
L.
, and
Giurgiutiu
,
V.
,
2016
, “
Characterization of Piezo Electric Wafer Active Sensors After Exposure to High Temperature
,”
Pressure Vessels and Piping Conference
,
37
.
38.
Lin
,
B.
,
Mendez-Torres
,
A. E.
,
Gresil
,
M.
, and
Giurgiutiu
,
V.
,
2012
, “
Structural Health Monitoring With Piezoelectric Wafer Active Sensors Exposed to Irradiation Effects
,”
ASME
Paper No. PVP2012-78848.
39.
Anderson
,
M.
,
Zagrai
,
A. N.
,
Daniel
,
J. D.
,
Westpfahl
,
D. J.
, and
Henneke
,
D.
,
2018
, “
Investigating Effect of Space Radiation Environment on Piezoelectric Sensors: Cobalt-60 Irradiation Experiment
,”
J. Nondestr. Eval., Diagn. Prognostics Eng. Syst.
,
1
(
1
), p.
011007
.
40.
O'Keefe
,
M.
, and
Navrotsky
,
A.
,
1981
,
Structure and Bonding in Crystals
,
Academic Press
,
New York
.
41.
Glidewell
,
C.
,
1975
, “
Some Chemical and Structural Consequences of Non-Bonded Interactions
,”
Inorg. Chim. Acta
,
12
(
1
), pp.
219
227
.
42.
Haider
,
M. F.
,
Mei
,
H.
,
Lin
,
B.
,
Yu
,
L.
,
Giurgiutiu
,
V.
,
Lam
,
P. S.
, and
Verst
,
C.
,
2018
, “
Piezoelectric Wafer Active Sensors Under Gamma Radiation Exposure Toward Applications for Structural Health Monitoring of Nuclear Dry Cask Storage Systems
,”
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII
, Vol.
10599
,
International Society for Optics and Photonics
, Denver, CO, p.
105992F
.
You do not currently have access to this content.