The objective of this work is to assess to which extent the interaction of antisymmetric ultrasonic guided waves with impact damage can be captured with an experimental model consisting of a single artificial delamination in composite structures. The structures of interest are composed of unidirectional prepreg carbon fiber-reinforced polymer (CFRP) with a quasi-isotropic layup. The artificial delamination is introduced into the laminate using two circular Teflon tapes during manufacturing and the realistic damage is simulated by impacting the samples at two energy levels. Two colocalized rectangular piezoceramics are used to generate an antisymmetric mode and noncontact measurement is performed using a three-dimensional (3D) laser Doppler vibrometer (3D-LDV) to extract the required information for evaluation of the reflection, transmission, as well as the scattering behavior of the antisymmetric mode. The corresponding coefficients as a function of frequency, incident angle, and type of damage are extracted. It is found that the amplitude of the coefficients and directivity patterns of scattered waves are barely affected by incident angle but significantly by the impact energy. In light of the results, design guidelines are proposed for efficient guided wave inspection of composite structures submitted to impacts.

References

References
1.
Su
,
Z.
, and
Ye
,
L.
,
2009
,
Identification of Damage Using Lamb Waves, From Fundamentals to Applications
,
Springer-Verlag GmbH & Co
,
Berlin
.
2.
ASTM
, 2009, “
Standard Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace Applications
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM E2533–09
.
3.
Rose
,
J.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
New York
.
4.
Chang
,
F.-K.
,
2009
, “
Introduction to Health Monitoring: Context, Problems, Solutions
,”
First European Pre-Workshop on Structural Health Monitoring
, Paris, France.
5.
Caron
,
Y.
, and
Richard
,
Y.
,
1998
, CF-188 Fatigue Life Management Program, NATO publication RTO-MP-7, AC/323 (AVT) TP/4, Paper 4.
6.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
7.
Webersen
,
M.
,
Johannesmann
,
S.
,
Düchting
,
J.
,
Claes
,
L.
, and
Henning
,
B.
,
2018
, “
Guided Ultrasonic Waves for Determining Effective Orthotropic Material Parameters of Continuous-Fiber Reinforced Thermoplastic Plates
,”
Ultrasonics
,
84
, pp.
53
62
.
8.
Yu
,
X.
,
Ratassepp
,
M.
,
Rajagopal
,
P.
, and
Fan
,
Z.
,
2016
, “
Anisotropic Effects on Ultrasonic Guided Waves Propagation in Composite Bends
,”
Ultrasonics
,
72
, pp.
95
105
.
9.
Barazanchy
,
D.
, and
Giurgiutiu
,
V.
,
2017
, “
A Unified Formulation for Predictive Modeling of Guidedultrasonic Wave Dispersion Curves in Metallic and Composite Materials
,”
J. Intell. Mater. Syst. Struct.
,
28
(
10
), pp.
1272
1286
.
10.
Diamanti
,
K.
,
Soutis
,
C.
, and
Hodgkinson
,
J. M.
,
2005
, “
Non-Destructive Inspection of Sandwich and Repaired Composite Laminated Structures
,”
Compos. Sci. Technol.
,
65
(
13
), pp.
2059
2067
.
11.
Sherafat
,
M. H.
,
Quaegebeur
,
N.
,
Hubert
,
L.
,
Lessard
,
L.
, and
Masson
,
P.
,
2016
, “
Finite Element Modeling of Lamb Wave Propagation in Composite Stepped Joints
,”
J. Reinf. Plast. Compos.
,
35
(
10
), pp.
796
806
.
12.
Matt
,
H.
,
Bartoli
,
I.
, and
Lanza di Scalea
,
F.
,
2005
, “
Ultrasonic Guided Wave Monitoring of Composite Wing Skin-to-Spar Bonded Joints in Aerospace Structures
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2240
2253
.
13.
Su
,
Z.
,
Yang
,
C.
,
Pan
,
N.
,
Ye
,
L.
, and
Zhou
,
L.-M.
,
2007
, “
Assessment of Delamination in Composite Beams Using Shear Horizontal (SH) Wave Mode
,”
Compos. Sci. Technol.
,
67
(
2
), pp.
244
251
.
14.
Sherafat
,
M. H.
,
Guitel
,
R.
,
Quaegebeur
,
N.
,
Lessard
,
L.
,
Hubert
,
P.
, and
Masson
,
P.
,
2016
, “
Guided Wave Scattering Behavior in Composite Bonded Assemblies
,”
Compos. Struct.
,
136
, pp.
696
705
.
15.
Sherafat
,
M. H.
,
Guitel
,
R.
,
Quaegebeur
,
N.
,
Hubert
,
P.
,
Lessard
,
L.
, and
Masson
,
P.
,
2016
, “
Structural Health Monitoring of a Composite Skin-Stringer Assembly Using Within-the-Bond Strategy of Guided Wave Propagation
,”
Mater. Des.
,
90
, pp.
787
794
.
16.
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1992
, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
39
(
3
), pp.
381
397
.
17.
Jin
,
J.
,
Quek
,
S. T.
, and
Wang
,
Q.
,
2005
, “
Design of Interdigital Transducers for Crack Detection in Plates
,”
Ultrasonics
,
43
(
6
), pp.
481
493
.
18.
Tua
,
P. S.
,
Quek
,
S. T.
, and
Wang
,
Q.
,
2004
, “
Detection of Cracks in Plates Using Piezo-Actuated Lamb Waves
,”
Smart Mater. Struct.
,
13
(
4
), pp.
643
660
.
19.
Tian
,
Z.
,
Yu
,
L.
, and
Leckey
,
C.
,
2016
, “
Rapid Guided Wave Delamination Detection and Quantification in Composites Using Global-Local Sensing
,”
Smart Mater. Struct.
,
25
(
8
), p.
085042
.
20.
Yu
,
X.
,
Ratassepp
,
M.
, and
Fan
,
Z.
,
2017
, “
Damage Detection in Quasi-Isotropic Composite Bends Using Ultrasonic Feature Guided Waves
,”
Compos. Sci. Technol.
,
141
, pp.
120
129
.
21.
Tian
,
Z.
,
Yu
,
L.
, and
Leckey
,
C.
,
2015
, “
Delamination Detection and Quantification on Laminated Composite Structures With Lamb Waves and Wavenumber Analysis
,”
J. Intell. Mater. Syst. Struct.
,
26
(
13
), pp.
1723
1738
.
22.
Liu
,
G. R.
,
2002
, “
A Combined Finite Element-Strip Element Method for Analyzing Elastic Wave Scattering by Cracks and Inclusions in Laminates
,”
Comput. Mech.
,
28
(
1
), pp.
76
81
.
23.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
The Interaction of Lamb Waves With Delaminations in Composite Laminates
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2240
2246
.
24.
Quaegebeur
,
N.
,
Micheau
,
P.
,
Masson
,
P.
, and
Maslouhi
,
A.
,
2010
, “
Structural Health Monitoring Strategy for Detection of Interlaminar Delamination in Composite Plates
,”
Smart Mater. Struct.
,
19
(
8
), pp.
514
523
.
25.
Basri
,
R.
, and
Chiu
,
W. K.
,
2004
, “
Numerical Analysis on the Interaction of Guided Lamb Waves With a Local Elastic Stiffness Reduction in Quasi-Isotropic Composite Plate Structures
,”
Compos. Struct.
,
66
(
1–4
), pp.
87
99
.
26.
Veidt
,
M.
, and
Ng
,
C. T.
,
2011
, “
Influence of Stacking Sequence on Scattering Characteristics of the Fundamental Anti-Symmetric Lamb Wave at Through Holes in Composite Laminates
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1280
1287
.
27.
Ng
,
C. T.
,
Veidt
,
M.
,
Rose
,
L. R. F.
, and
Wang
,
C. H.
,
2012
, “
Analytical and Finite Element Prediction of Lamb Wave Scattering at Delaminations in Quasi-Isotropic Composite Laminates
,”
J. Sound Vib.
,
331
(
22
), pp.
4870
4883
.
28.
Leckey
,
C. A.
,
Rogge
,
M. D.
, and
Parker
,
F. R.
,
2014
, “
Guided Waves in Anisotropic and Quasi Isotropic Aerospace Composites: Three-Dimensional Simulation and Experiment
,”
Ultrasonics
,
54
(
1
), pp.
385
394
.
29.
Ng
,
C. T.
, and
Veidt
,
M.
,
2011
, “
Scattering of the Fundamental Anti-Symmetric Lamb Wave at Delaminations in Composite Laminates
,”
J. Acoust. Soc. Am.
,
129
(
2
), pp.
1288
1296
.
30.
ASTM
, 2015, “
Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM D7136/D7136M–15
.
31.
Ostiguy
,
P. C.
,
Sherafat
,
M. H.
,
Franca
,
D. R.
,
Bouslama
,
N.
,
Quaegebeur
,
N.
,
Maslouhi
,
A.
,
Lessard
,
L.
,
Hubert
,
P.
,
Viens
,
M.
,
Mofakhami
,
M. R.
,
Hajjar
,
Z.
, and
Masson
,
P.
,
2015
, “
Selection of Structural Features for the Systematic Study of Guided Wave Propagation and Interaction With Damage
,”
International Workshop on Structural Health Monitoring
(
IWSHM
), Stanford, CA, Sept. 1–3, pp. 1973–1980.
32.
Quaegebeur
,
N.
,
Bouslama
,
N.
,
Bilodeau
,
M.
,
Guitel
,
R.
,
Masson
,
P.
,
Maslouhi
,
A.
, and
Micheau
,
P.
,
2017
, “
Guided Wave Scattering by a Geometrical Feature: Application to Characterization of Fatigue and Machined Cracks
,”
Ultrasonics
,
73
, pp.
187
195
.
33.
Guitel
,
R.
,
Quaegebeur
,
N.
,
Micheau
,
P.
, and
Masson
,
P.
,
2015
, “
Clamped Piezoelectric Movable Transducer for Robust and Selective Guided Wave Mode Generation
,”
CANSMART 2015: International Conference on Smart Materials and Structures
, Vancouver, BC, Canada, July 15–17, pp. 367–376.https://www.researchgate.net/publication/303673964_CLAMPED_PIEZOELECTRIC_MOVABLE_TRANSDUCER_FOR_ROBUST_AND_SELECTIVE_GUIDED_WAVE_MODE_GENERATION
34.
F.
,
L. S.
,
Matt
,
H.
,
I.
,
B.
,
2007
, “
The Response of Rectangular Piezoelectric Sensors to Rayleigh and Lamb Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
121
(
1
), pp.
175
187
.
35.
Ostiguy
,
P. C.
,
Quaegebeur
,
N.
, and
Masson
,
P.
,
2012
, “
Assessment of the Excitelet Algorithm for in-Situ Mechanical Characterization of Orthotropic Structures
,”
Proc. SPIE Smart Structures and Materials/NDE
,
8348
, p.
83480N
.
36.
Alleyne
,
N. D.
, and
Cawley
,
P.
,
1990
, “
A 2-Dimensional Fourier Transform Method for the Quantitative Measurement of Lamb Modes
,”
Ultrasonics Symposium
, pp.
1143
1146
.
37.
Sharif-Khodaei
,
Z.
, and
Aliabadi
,
M. H.
,
2014
, “
Assessment of Delay-and-Sum Algorithms for Damage Detection in Aluminum and Composite Plates
,”
Smart Mater. Struct.
,
23
(
7
), pp.
2
27
.
38.
Staszewski
,
W. J.
,
Pierce
,
S. G.
,
Worden
,
K.
,
Philip
,
W. R.
,
Tomlinson
,
G. R.
, and
Culshaw
,
B.
,
1997
, “
Wavelet Signal Processing for Enhanced Lamb Wave Defect Detection in Composite Plates Using Optical Fiber Detection
,”
Opt. Eng.
,
36
(
7
), pp.
1877
1888
.
39.
Sohn
,
H.
,
Park
,
H. W.
,
Law
,
K. H.
, and
Farrar
,
C. R.
,
2007
, “
Combination of a Time Reversal Process and a Consecutive Outlier Analysis for Baseline-Free Damage Diagnosis
,”
J. Intell. Mater. Syst. Struct.
,
18
, pp.
335
346
.
40.
Wang
,
D.
,
Ye
,
L.
,
Su
,
Z.
,
Li
,
F.
, and
Meng
,
G.
,
2010
, “
Probabilistic Damage Identification Based on Correlation Analysis Using Guided Wave Signals in Aluminum Plates
,”
Struct. Health Monit.
,
9
(
2
), pp.
133
144
.
You do not currently have access to this content.