Composite materials find wide range of applications due to their high strength-to-weight ratio. Due to this increasing dependence on composite materials, there is a need to study their mechanical behavior in case of damage. There are several extended nondestructive testing (ENDT) and structural health-monitoring (SHM) methods for the assessment of the mechanical properties each with their set of advantages and disadvantages. This paper presents a comparative study of three distinct damage detection methods (infrared thermography (IRT), neutral axis (NA) method based on optical strain sensor measurements, and terahertz spectroscopy) for the detection of delamination and temperature-induced damage in a simple glass fiber reinforced polymer (GFRP) beamlike structure. The terahertz spectroscopy is a specialized technique suitable for detecting deterioration inside the structure but has limited application for in-service performance monitoring. Similarly, the IRT technique in the active domain may be used for in situ monitoring but not in in-service assessment. Both methods allow the visualization of the internal structure and hence allow identification of the type and the extent of damage. Fiber optic sensors (especially fiber Bragg grating (FBG)) due to their small diameter and no need of calibration can be permanently integrated within the sample and applied for continuous dynamic strain measurements. The measured strain is treated as an input for neutral axis (NA) method, which as a damage-sensitive feature may be used for in-service monitoring but gives absolutely no information about the type and extent of damage. The results for damage detection based on proposed comparative studies give a complete description of the analyzed structure.

References

References
1.
Vollmer
,
M.
, and
Möllmann
,
K.-P.
,
2010
,
Infrared Thermal Imaging: Fundamentals, Research and Applications
,
Wiley
, Weinheim, Germany.
2.
Yang
,
R.
, and
He
,
Y.
,
2016
, “
Optically and Non-Optically Excited Thermography for Composites: A Review
,”
Infrared Phys. Technol.
,
75
, pp.
26
50
.
3.
Liang
,
T.
,
Ren
,
W.
,
Tian
,
G. Y.
,
Elradi
,
M.
, and
Gao
,
Y.
,
2016
, “
Low Energy Impact Damage Detection in CFRP Using Eddy Current Pulsed Thermography
,”
Compos. Struct.
,
143
, pp.
352
361
.
4.
Gleiter
,
A.
,
Spießberger
,
C.
, and
Busse
,
G.
,
2010
, “
Lockin Thermography With Optical or Ultrasound Excitation
,”
J. Mech. Eng.
,
56
(10), pp.
619
924
.
5.
Yang
,
R.
, and
He
,
Y.
,
2016
, “
Polymer-Matrix Composites Carbon Fibre Characterisation and Damage Inspection Using Selectively Heating Thermography (SeHT) Through Electromagnetic Induction
,”
Compos. Struct.
,
140
, pp.
590
601
.
6.
Liew
,
C. K.
,
Veidt
,
M.
,
Rajic
,
N.
,
Tsoi
,
K.
,
Rowlands
,
D.
, and
Morton
,
H.
,
2011
, “
Inspections of Helicopter Composite Airframe Structures Using Conventional and Emerging Nondestructive Testing Methods
,”
J. Test. Eval.
,
39
(
6
), pp.
1
12
.
7.
Tomić
,
L. D.
,
Jovanović
,
D. B.
,
Karkalić
,
R. M.
,
Damnjanović
,
V. M.
,
Kovačević
,
B. V.
,
Filipović
,
D. D.
, and
Radaković
,
S. S.
,
2015
, “
Application of Pulsed Flash Thermography Method for Specific Defect Estimation in Aluminum
,”
Therm. Sci.
,
19
(
5
), pp.
1845
1854
.
8.
Sakagami
,
T.
,
Izumi
,
Y.
,
Kobayashi
,
Y.
,
Mizokami
,
Y.
, and
Kawabata
,
S.
,
2014
, “
Applications of Infrared Thermography for Nondestructive Testing of Fatigue Cracks in Steel Bridges
,”
Proc. SPIE
,
9105
, p.
91050S
.
9.
Swiderski
,
W.
,
2016
, “
Non-Destructive Testing of Composite Materials Used in Military Applications by Eddy Current Thermography Method
,”
Proc. SPIE
,
9987
, p.
998705
.
10.
Boccardi
,
S.
,
Boffa
,
N.
,
Carlomagno
,
G.
,
Maio
,
L.
,
Meola
,
C.
, and
Ricci
,
F.
,
2015
, “
Infrared Thermography and Ultrasonics to Evaluate Composite Materials for Aeronautical Applications
,”
J. Phys.: Conf. Ser.
,
658
, p.
012007
.
11.
Majewska
,
K.
,
Mieloszyk
,
M.
, and
Ostachowicz
,
W.
,
2016
, “
Glass Fibre Composite Elements With Embedded Fibre Bragg Grating Sensors Inspected by Thermography Techniques
,” 8th European Workshop on Structural Health Monitoring (
EWSHM
2016), Spain, Bilbao, July 5–8.
12.
Park
,
J.-W.
,
Im
,
K.-H.
,
Yang
,
I.-Y.
,
Kim
,
S.-K.
,
Kang
,
S.-J.
,
Cho
,
Y.-T.
,
Jung
,
J.-A.
, and
Hsu
,
D. K.
,
2014
, “
Terahertz Radiation NDE of Composite Materials for Wind Turbine Applications
,”
Int. J. Precis. Eng. Manuf.
,
15
(
6
), pp.
1247
1254
.
13.
Stoik
,
C. D.
,
Bohn
,
M. J.
, and
Blackshire
,
J.
,
2008
, “
Nondestructive Evaluation of Aircraft Composites Using Transmissive Terahertz Time Domain Spectroscopy
,”
Opt. Express
,
16
(
21
), pp.
17039
17051
.
14.
Dong
,
J.
,
Kim
,
B.
,
Locquet
,
A.
,
McKeon
,
P.
,
Declercq
,
N.
, and
Citrin
,
D.
,
2015
, “
Nondestructive Evaluation of Forced Delamination in Glass Fiber-Reinforced Composites by Terahertz and Ultrasonic Waves
,”
Compos. Part B: Eng.
,
79
, pp.
667
675
.
15.
Ryu
,
C.-H.
,
Park
,
S.-H.
,
Kim
,
D.-H.
,
Jhang
,
K.-Y.
, and
Kim
,
H.-S.
,
2016
, “
Nondestructive Evaluation of Hidden Multi-Delamination in a Glass-Fiber-Reinforced Plastic Composite Using Terahertz Spectroscopy
,”
Compos. Struct.
,
156
, pp.
338
347
.
16.
Radzieński
,
M.
,
Mieloszyk
,
M.
,
Rahani
,
E. K.
,
Kundu
,
T.
, and
Ostachowicz
,
W.
,
2015
, “
Heat Induced Damage Detection in Composite Materials by Terahertz Radiation
,”
Proc. SPIE
,
9438
, p.
94381P
.
17.
Raišutis
,
R.
,
Jasiūnienė
,
E.
, and
Žukauskas
,
E.
,
2008
, “
Ultrasonic NDT of Wind Turbine Blades Using Guided Waves
,”
Ultrasound, Kaunas Technol.
,
63
(
1
), pp.
7
11
.
18.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
,
30
(
2
), pp.
91
105
.
19.
Benedetti
,
M.
,
Fontanari
,
V.
, and
Zonta
,
D.
,
2011
, “
Structural Health Monitoring of Wind Towers: Remote Damage Detection Using Strain Sensors
,”
Smart Mater. Struct.
,
20
(
5
), p.
055009
.
20.
Gebremichael
,
Y.
,
Li
,
W.
,
Boyle
,
W.
,
Meggitt
,
B.
,
Grattan
,
K.
,
McKinley
,
B.
,
Fernando
,
G.
,
Kister
,
G.
,
Winter
,
D.
, and
Canning
,
L.
, et al. .,
2005
, “
Integration and Assessment of Fibre Bragg Grating Sensors in an All-Fibre Reinforced Polymer Composite Road Bridge
,”
Sens. Actuators A: Phys.
,
118
(
1
), pp.
78
85
.
21.
Wang
,
G.
,
Pran
,
K.
,
Sagvolden
,
G.
,
Havsgård
,
G.
,
Jensen
,
A.
,
Johnson
,
G.
, and
Vohra
,
S.
,
2001
, “
Ship Hull Structure Monitoring Using Fibre Optic Sensors
,”
Smart Mater. Struct.
,
10
(
3
), p.
472
.
22.
Park
,
S.
,
Park
,
T.
, and
Han
,
K.
,
2011
, “
Real-Time Monitoring of Composite Wind Turbine Blades Using Fiber Bragg Grating Sensors
,”
Adv. Compos. Mater.
,
20
(
1
), pp.
39
51
.
23.
Udd
,
E.
, and
Spillman
,
J. W.
,
2011
,
Fiber Optic Sensors: An Introduction for Engineers and Scientists
,
2nd ed.
,
Wiley
, Hoboken, NJ.
24.
Majewska
,
K.
,
Mieloszyk
,
M.
,
Ostachowicz
,
W.
, and
Król
,
A.
,
2014
, “
Experimental Method of Strain/Stress Measurements on Tall Sailing Ships Using Fibre Bragg Grating Sensors
,”
Appl. Ocean Res.
,
47
, pp.
270
283
.
25.
Sigurdardottir
,
D.
, and
Glisic
,
B.
,
2013
, “
Neutral Axis as Damage Sensitive Feature
,”
Smart Mater. Struct.
,
22
(
7
), p.
075030
.
26.
Sigurdardottir
,
D. H.
, and
Glisic
,
B.
,
2014
, “
Detecting Minute Damage in Beam-Like Structures Using the Neutral Axis Location
,”
Smart Mater. Struct.
,
23
(
12
), p.
125042
.
27.
Xia
,
H.
,
Ni
,
Y.
, and
Ye
,
X.
,
2012
, “
Neutral-Axis Position Based Damage Detection of Bridge Deck Using Strain Measurement: Formulation of a Kalman Filter Estimator
,”
Sixth European Workshop on Structural Health Monitoring
, Dresden, Germany, July 3–6.
28.
Soman
,
R.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2015
, “
Bi-Axial Neutral Axis Tracking for Damage Detection in Wind-Turbine Towers
,”
Wind Energy
,
19
(4), pp. 639–650.
29.
Soman
,
R.
,
Majewska
,
K.
,
Mieloszyk
,
M.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2016
, “
Kalman Filter Based Neutral Axis Tracking Under Varying Temperature Conditions
,” 8th European Workshop on Structural Health Monitoring (
EWSHM
2016), Spain, Bilbao, July 5–8.
30.
Majewska
,
K.
,
Soman
,
R.
,
Mieloszyk
,
M.
, and
Ostachowicz
,
W.
,
2017
, “
Assessment of Delamination in Composite Beam Using Infrared Thermography, Optical Sensors and Terahertz Technique
,”
Proc. SPIE
,
10170
, p.
1017005
.
31.
Su
,
K.
,
Shen
,
Y.-C.
, and
Zeitler
,
J. A.
,
2014
, “
Terahertz Sensor for Non-Contact Thickness and Quality Measurement of Automobile Paints of Varying Complexity
,”
IEEE Trans. Terahertz Sci. Technol.
,
4
(
4
), pp.
432
439
.
32.
Jackson
,
J.
,
Mourou
,
M.
,
Whitaker
,
J.
,
Duling
,
I. N.
,
Williamson
,
S.
,
Menu
,
M.
, and
Mourou
,
G.
,
2008
, “
Terahertz Imaging for Non-Destructive Evaluation of Mural Paintings
,”
Opt. Commun.
,
281
(
4
), pp.
527
532
.
33.
Dexheimer
,
S. L.
,
2007
,
Terahertz Spectroscopy: Principles and Applications
,
CRC Press
, Boca Raton, FL.
34.
Minkina
,
W.
, and
Dudzik
,
S.
,
2009
,
Infrared Thermography: Errors and Uncertainties
,
Wiley
, Chichester, UK.
35.
Majumder
,
M.
,
Gangopadhyay
,
T. K.
,
Chakraborty
,
A. K.
,
Dasgupta
,
K.
, and
Bhattacharya
,
D. K.
,
2008
, “
Fibre Bragg Gratings in Structural Health Monitoring? Present Status and Applications
,”
Sens. Actuators A: Phys.
,
147
(
1
), pp.
150
164
.
36.
Hung
,
Y.
,
Chen
,
Y. S.
,
Ng
,
S.
,
Liu
,
L.
,
Huang
,
Y.
,
Luk
,
B.
,
Ip
,
R.
,
Wu
,
C.
, and
Chung
,
P.
,
2009
, “
Review and Comparison of Shearography and Active Thermography for Nondestructive Evaluation
,”
Mater. Sci. Eng.: R: Rep.
,
64
(
5–6
), pp.
73
112
.
37.
Bull
,
D.
,
Spearing
,
S.
,
Sinclair
,
I.
, and
Helfen
,
L.
,
2013
, “
Three-Dimensional Assessment of Low Velocity Impact Damage in Particle Toughened Composite Laminates Using Micro-Focus X-Ray Computed Tomography and Synchrotron Radiation Laminography
,”
Compos. Part A: Appl. Sci. Manuf.
,
52
, pp.
62
69
.
38.
Soman
,
R.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2015
, “
Threshold Determination for Neutral Axis Tracking Based Damage Detection in Wind Turbine Towers
,”
EWEA Offshore Conference
(EWEA).
39.
Soman
,
R.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2017
, “
Comparitive Study of Deterioration of Composite Due to Temperature Using Strain, Electromechanical Impedence and Guided Waves
,”
Seventh EASN International Conference on Innovation in European Aeronautics Research
, Warsaw, Poland, Sept. 26–29, pp. 50–59.
40.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
41.
Ostachowicz
,
W.
,
Kudela
,
P.
,
Malinowski
,
P.
, and
Wandowski
,
T.
,
2009
, “
Damage Localisation in Plate-Like Structures Based on PZT Sensors
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1805
1829
.
42.
Sikdar
,
S.
, and
Banerjee
,
S.
,
2016
, “
Identification of Disbond and High Density Core Region in a Honeycomb Composite Sandwich Structure Using Ultrasonic Guided Waves
,”
Compos. Struct.
,
152
, pp.
568
578
.
43.
Ricci
,
F.
,
Monaco
,
E.
,
Maio
,
L.
,
Boffa
,
N. D.
, and
Mal
,
A. K.
,
2016
, “
Guided Waves in a Stiffened Composite Laminate With a Delamination
,”
Struct. Health Monit.
,
15
(
3
), pp.
351
358
.
44.
Soleimanpour
,
R.
, and
Ng
,
C.-T.
,
2017
, “
Locating Delaminations in Laminated Composite Beams Using Nonlinear Guided Waves
,”
Eng. Struct.
,
131
, pp.
207
219
.
You do not currently have access to this content.