This paper focuses on the development and validation of a robust framework for surface crack detection and assessment in steel pipes based on measured vibration responses collected using a network of piezoelectric (PZT) wafers. The pipe structure considered in this study contained multiple progressive cracks occurring at different locations and with various orientations (along the circumference or length). The fusion of data collected from multiple PZT wafers was investigated based on two approaches: (a) combining the raw data from all sensors before establishing a statistical model for damage classification and (b) combining the features from each sensor after applying a multiclass support vector machine recursive feature elimination (MCSVM-RFE), for dimensionality reduction, and taking the union of discriminative features among the different sources of data. A MCSVM learning algorithm was employed to train the data and generate a statistical classifier. The dataset consisted of ten classes, consisting of nine damage cases and the healthy state. The accuracy of the prediction based on the two fusion approaches resulted in a high accuracy, exceeding 95%, but the number of features needed to enrich the accuracy (95%) differed between the two approaches. Furthermore, the performance and the precision in the prediction of the classifier were evaluated when the data from only a single sensor was used compared with the combined data from all the sensors within the network. Very promising results in the classification of damage were obtained, based on the case study that included multiple damage scenarios with different lengths and orientations.

References

References
1.
Konar
,
P.
, and
Chattopadhyay
,
P.
,
2011
, “
Bearing Fault Detection of Induction Motor Using Wavelet and Support Vector Machines (SVMs)
,”
Appl. Soft Comput.
,
11
(
6
), pp.
4203
4211
.
2.
Fakih
,
M. A.
,
Mustapha
,
S.
,
Tarraf
,
J.
,
Ayoub
,
G.
, and
Hamade
,
R.
,
2018
, “
Detection and Assessment of Flaws in Friction Stir Welded Joints Using Ultrasonic Guided Waves: Experimental and Finite Element Analysis
,”
Mech. Syst. Signal Process.
,
101
(
Suppl. C
), pp.
516
534
.
3.
Kishawy
,
H. A.
, and
Gabbar
,
H. A.
,
2010
, “
Review of Pipeline Integrity Management Practices
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
373
380
.
4.
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
2006
, “Long Range Guided Wave Inspection Usage–Current Commercial Capabilities and Research Directions,” Imperial College London, London.
5.
Jarvis
,
R.
,
Cawley
,
P.
, and
Nagy
,
P. B.
,
2016
, “
Current Deflection NDE for Pipeline Inspection and Monitoring
,”
AIP Conf. Proc.
,
1706
(1), p. 160002.
6.
Chang
,
P. C.
,
Flatau
,
A.
, and
Liu
,
S. C.
,
2003
, “
Review Paper: Health Monitoring of Civil Infrastructure
,”
Struct. Health Monit.
,
2
(
3
), pp.
257
267
.
7.
Lie
,
S. T.
,
Zhang
,
Y.
, and
Wang
,
L. Q.
,
2015
, “
Damage Detection in Compressed Natural Gas (CNG) Cylinders Based on Auxiliary Mass Induced Frequency Shift
,”
Exp. Mech.
,
55
(
3
), pp.
487
498
.
8.
Fassois
,
S. D.
, and
Sakellariou
,
J. S.
,
2009
, “
Statistical Time Series Methods for SHM
,”
Encyclopedia of Structural Health Monitoring
,
Wiley
,
Hoboken, NJ
.
9.
Makki Alamdari
,
M.
,
Li
,
J.
, and
Samali
,
B.
,
2015
, “
Damage Identification Using 2-D Discrete Wavelet Transform on Extended Operational Mode Shapes
,”
Arch. Civ. Mech. Eng.
,
15
(
3
), pp.
698
710
.
10.
Barthorpe
,
R. J.
, and
Worden
,
K.
,
2011
, “
Classification of Multi-Site Damage Using Support Vector Machines
,”
J. Phys.: Conf. Ser.
,
305
(
1
), p.
012059
.
11.
Byvatov
,
E.
,
Fechner
,
U.
,
Sadowski
,
J.
, and
Schneider
,
G.
,
2003
, “
Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification
,”
J. Chem. Inf. Comput. Sci.
,
43
(
6
), pp.
1882
1889
.
12.
Ghiasi
,
R.
,
Torkzadeh
,
P.
, and
Noori
,
M.
,
2016
, “
A Machine-Learning Approach for Structural Damage Detection Using Least Square Support Vector Machine Based on a New Combinational Kernel Function
,”
Struct. Health Monit.
,
15
(
3
), pp.
302
316
.
13.
Worden
,
K.
, and
Lane
,
A.
,
2001
, “
Damage Identification Using Support Vector Machines
,”
Smart Mater. Struct.
,
10
(
3
), p.
540
.
14.
Yuan
,
S.-F.
, and
Chu
,
F.-L.
,
2006
, “
Support Vector Machines-Based Fault Diagnosis for Turbo-Pump Rotor
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
939
952
.
15.
Sbarufatti
,
C.
,
Manson
,
G.
, and
Worden
,
K.
,
2014
, “
A Numerically-Enhanced Machine Learning Approach to Damage Diagnosis Using a Lamb Wave Sensing Network
,”
J. Sound Vib.
,
333
(
19
), pp.
4499
4525
.
16.
Farrar
,
C. R.
, and
Worden
,
K.
,
2012
, “
Unsupervised Learning—Novelty Detection
,”
Structural Health Monitoring
,
Wiley
,
Chichester, UK
, pp.
321
360
.
17.
Farrar
,
C. R.
, and
Worden
,
K.
,
2012
, “
Supervised Learning—Classification and Regression
,”
Structural Health Monitoring
,
Wiley
,
Chichester, UK
, pp.
361
401
.
18.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
19.
Hsu
,
C.-W.
, and
Lin
,
C.-J.
,
2002
, “
A Comparison of Methods for Multiclass Support Vector Machines
,”
IEEE Trans. Neural Networks
,
13
(
2
), pp.
415
425
.
20.
Auria
,
L.
, and
Moro
,
R. A.
,
2008
, “Support Vector Machines (SVM) as a Technique for Solvency Analysis,” Discussion Paper, DIW, Berlin, pp. 1–16.
21.
Cyganek
,
B.
,
2008
, “
Color Image Segmentation With Support Vector Machines: Applications to Road Signs Detection
,”
Int. J. Neural Syst.
,
18
(
4
), pp.
339
345
.
22.
Huynh
,
C. P.
,
Mustapha
,
S.
,
Runcie
,
P.
, and
Porikli
,
F.
,
2015
, “
Multi-Class Support Vector Machines for Paint Condition Assessment on the Sydney Harbour Bridge Using Hyperspectral Imaging
,”
Struct. Monit. Maint.
,
2
(
3
), pp.
181
197
.
23.
Alamdari
,
M. M.
,
Samali
,
B.
,
Li
,
J.
,
Kalhori
,
H.
, and
Mustapha
,
S.
,
2016
, “
Spectral-Based Damage Identification in Structures Under Ambient Vibration
,”
J. Comput. Civ. Eng.
,
30
(
4
), p.
04015062
.
24.
Khoa
,
N. L. D.
,
Zhang
,
B.
,
Wang
,
Y.
,
Chen
,
F.
, and
Mustapha
,
S.
,
2014
, “
Robust Dimensionality Reduction and Damage Detection Approaches in Structural Health Monitoring
,”
Struct. Health Monit.
,
13
(
4
), pp.
406
417
.
25.
HosseinAbadi
,
H. Z.
,
Amirfattahi
,
R.
,
Nazari
,
B.
,
Mirdamadi
,
H. R.
, and
Atashipour
,
S. A.
,
2014
, “
GUW-Based Structural Damage Detection Using WPT Statistical Features and Multiclass SVM
,”
Appl. Acoust.
,
86
, pp.
59
70
.
26.
Widodo
,
A.
,
Kim
,
E. Y.
,
Son
,
J.-D.
,
Yang
,
B.-S.
,
Tan
,
A. C. C.
,
Gu, D.-S, Choi
,
B.-K.
, and
Mathew
,
J.
, 2009, “
Fault Diagnosis of Low Speed Bearing Based on Relevance Vector Machine and Support Vector Machine
,”
Expert Syst. Appl.
,
36
(3), pp. 7252–7261.
27.
Yang
,
B.-S.
,
Han
,
T.
, and
Hwang
,
W.-W.
,
2005
, “
Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines
,”
J. Mech. Sci. Technol.
,
19
(
3
), pp.
846
859
.
28.
Yeesock
,
K.
,
Jo Woon
,
C.
,
Ki
,
H. C.
, and
JungMi
,
K.
,
2013
, “
Wavelet-Based AR–SVM for Health Monitoring of Smart Structures
,”
Smart Mater. Struct.
,
22
(
1
), p.
015003
.
29.
Saeys
,
Y.
,
Inza
,
I.
, and
Larrañaga
,
P.
,
2007
, “
A Review of Feature Selection Techniques in Bioinformatics
,”
Bioinformatics
,
23
(
19
), pp.
2507
2517
.
30.
Khatibinia
,
M.
,
Javad Fadaee
,
M.
,
Salajegheh
,
J.
, and
Salajegheh
,
E.
,
2013
, “
Seismic Reliability Assessment of RC Structures Including Soil–Structure Interaction Using Wavelet Weighted Least Squares Support Vector Machine
,”
Reliab. Eng. Syst. Saf.
,
110
, pp.
22
33
.
31.
Sohn
,
H.
,
Czarnecki
,
J. A.
, and
Farrar
,
C. R.
,
2000
, “
Structural Health Monitoring Using Statistical Process Control
,”
J. Struct. Eng.
,
126
(
11
), pp.
1356
1363
.
32.
Worden
,
K.
, and
Manson
,
G.
,
1999
, “
Visualisation and Dimension Reduction of High-Dimensional Data for Damage Detection
,”
17th International Modal Analysis Conference
, Kissimmee, FL, Feb. 8–11, pp. 1576–1585.https://pdfs.semanticscholar.org/5eb4/3e944b27287591646e05317d99a99910ffff.pdf
33.
Zang
,
C.
, and
Imregun
,
M.
,
2001
, “
Structural Damage Detection Using Artificial Neural Networks and Measured FRF Data Reduced Via Principal Component Projection
,”
J. Sound Vib.
,
242
(
5
), pp.
813
827
.
34.
Zang
,
C.
,
Friswell
,
M. I.
, and
Imregun
,
M.
,
2004
, “
Structural Damage Detection Using Independent Component Analysis
,”
Struct. Health Monit.
,
3
(
1
), pp.
69
83
.
35.
Keogh
,
E.
,
Chakrabarti
,
K.
,
Pazzani
,
M.
, and
Mehrotra
,
S.
,
2001
, “
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
,”
Knowl. Inf. Syst.
,
3
(
3
), pp.
263
286
.
36.
Zhou
,
Q.
,
Zhou
,
H.
,
Zhou
,
Q.
,
Yang
,
F.
, and
Luo
,
L.
,
2014
, “
Structure Damage Detection Based on Random Forest Recursive Feature Elimination
,”
Mech. Syst. Signal Process.
,
46
(
1
), pp.
82
90
.
37.
Statnikov
,
A.
,
Wang
,
L.
, and
Aliferis
,
C. F.
,
2008
, “
A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification
,”
BMC Bioinf.
,
9
(
1
), p.
319
.
38.
Guyon
,
I.
,
Weston
,
J.
,
Barnhill
,
S.
, and
Vapnik
,
V.
,
2002
, “
Gene Selection for Cancer Classification Using Support Vector Machines
,”
Mach. Learn.
,
46
(
1–3
), pp.
389
422
.
39.
Zhou
,
X.
, and
Tuck
,
D. P.
,
2007
, “
MSVM-RFE: Extensions of SVM-RFE for Multiclass Gene Selection on DNA Microarray Data
,”
Bioinformatics
,
23
(
9
), pp.
1106
1114
.
40.
Alamdari
,
M. M.
,
Rakotoarivelo
,
T.
, and
Khoa
,
N. L. D.
,
2017
, “
A Spectral-Based Clustering for Structural Health Monitoring of the Sydney Harbour Bridge
,”
Mech. Syst. Signal Process.
,
87
(Pt. A), pp.
384
400
.
41.
Diez
,
A.
,
Khoa
,
N. L. D.
,
Makki Alamdari
,
M.
,
Wang
,
Y.
,
Chen
,
F.
, and
Runcie
,
P.
,
2016
, “
A Clustering Approach for Structural Health Monitoring on Bridges
,”
J. Civ. Struct. Health Monit.
,
6
(
3
), pp.
429
445
.
42.
Vapnik
,
V. N.
, and
Vapnik
,
V.
,
1998
,
Statistical Learning Theory
, Vol.
1
,
Wiley
,
New York
.
43.
Knerr
,
S.
,
Personnaz
,
L.
, and
Dreyfus
,
G.
,
1990
, “
Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network
,”
Neurocomputing
,
Springer
,
Berlin
, pp.
41
50
.
44.
Bottou
,
L.
,
Cortes
,
C.
,
Denker
,
J. S.
,
Drucker
,
H.
,
Guyon
,
I.
,
Jackel
,
L. D.
,
LeCun
,
Y.
,
Muller
,
U. A.
,
Sackinger
,
E.
,
Simard
,
P.
, and
Vapnik
,
V.
,
1994
, “
Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition
,”
12th IAPR International Conference on Pattern Recognition (Conference B: Computer Vision and Image Processing
, Jerusalem, Israel, Oct. 9–13, pp. 77–82.
45.
Banks
,
H. T.
,
Inman
,
D. J.
,
Leo
,
D. J.
, and
Wang
,
Y.
,
1996
, “
An Experimentally Validated Damage Detection Theory in Smart Structures
,”
J. Sound Vib.
,
191
(
5
), pp.
859
880
.
46.
Makki Alamdari
,
M.
,
Li
,
J.
, and
Samali
,
B.
,
2014
, “
FRF-Based Damage Localization Method With Noise Suppression Approach
,”
J. Sound Vib.
,
333
(
14
), pp.
3305
3320
.
47.
Ko
,
M. H.
,
West
,
G.
,
Venkatesh
,
S.
, and
Kumar
,
M.
,
2008
, “
Using Dynamic Time Warping for Online Temporal Fusion in Multisensor Systems
,”
Inf. Fusion
,
9
(
3
), pp.
370
388
.
48.
Pires
,
I.
,
Garcia
,
N.
,
Pombo
,
N.
, and
Flórez-Revuelta
,
F.
,
2016
, “
From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices
,”
Sensors
,
16
(
2
), p.
184
.
49.
Dasarathy
,
B. V.
,
1994
,
Decision Fusion
, Vol.
1994
,
IEEE Computer Society Press
,
Los Alamitos, CA
.
50.
Hanley
,
J. A.
, and
McNeil
,
B. J.
,
1982
, “
The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve
,”
Radiology
,
143
(
1
), pp.
29
36
.
You do not currently have access to this content.