Ultrasonic guided waves (GWs) are being extensively investigated and applied to nondestructive evaluation and structural health monitoring. Guided waves are, under most circumstances, excited in a frequency range up to several hundred kilohertz or megahertz for detecting defect/damage effectively. In this regard, numerical simulation using finite element analysis (FEA) offers a powerful tool to study the interaction between wave and defect/damage. Nevertheless, the simulation, based on linear/quadratic interpolation, may be inaccurate to depict the complex wave mode shape. Moreover, the mass lumping technique used in FEA for diagonalizing mass matrix in the explicit time integration may also undermine the calculation accuracy. In recognition of this, a time domain spectral element method (SEM)—a high-order FEA with Gauss–Lobatto–Legendre (GLL) node distribution and Lobatto quadrature algorithm—is studied to accurately model wave propagation. To start with, a simplified two-dimensional (2D) plane strain model of Lamb wave propagation is developed using SEM. The group velocity of the fundamental antisymmetric mode (A0) is extracted as indicator of accuracy, where SEM exhibits a trend of quick convergence rate and high calculation accuracy (0.03% error). A benchmark study of calculation accuracy and efficiency using SEM is accomplished. To further extend SEM-based simulation to interpret wave propagation in structures of complex geometry, a three-dimensional (3D) SEM model with arbitrary in-plane geometry is developed. Three-dimensional numerical simulation is conducted in which the scattering of A0 mode by a through hole is interrogated, showing a good match with experimental and analytical results.

References

References
1.
Kundu
,
T.
,
2014
, “
Acoustic Source Localization
,”
Ultrasonics
,
54
(
1
), pp.
25
38
.
2.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3
), pp.
753
780
.
3.
Raghavan
,
A.
, and
Cesnik
,
C. E.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
,
39
(
2
), pp.
91
116
.
4.
Qiu
,
L.
,
Yuan
,
S.
,
Chang
,
F.-K.
,
Bao
,
Q.
, and
Mei
,
H.
,
2014
, “
On-Line Updating Gaussian Mixture Model for Aircraft Wing Spar Damage Evaluation Under Time-Varying Boundary Condition
,”
Smart Mater. Struct.
,
23
(
12
), p.
125001
.
5.
Qiu
,
L.
,
Yuan
,
S.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2011
, “
A Time Reversal Focusing Based Impact Imaging Method and Its Evaluation on Complex Composite Structures
,”
Smart Mater. Struct.
,
20
(
10
), p.
105014
.
6.
Zhou
,
C.
,
Su
,
Z.
, and
Cheng
,
L.
,
2011
, “
Quantitative Evaluation of Orientation-Specific Damage Using Elastic Waves and Probability-Based Diagnostic Imaging
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2135
2156
.
7.
Liu
,
M.
,
Wang
,
Q.
,
Zhang
,
Q.
,
Long
,
R.
, and
Su
,
Z.
,
2018
, “
Characterizing Hypervelocity (>2.5 Km/s)-Impact-Engendered Damage in Shielding Structures Using In-Situ Acoustic Emission: Simulation and Experiment
,”
Int. J. Impact Eng.
,
111
, pp.
273
284
.
8.
Qiu
,
L.
,
Liu
,
M.
,
Qing
,
X.
, and
Yuan
,
S.
,
2013
, “
A Quantitative Multidamage Monitoring Method for Large-Scale Complex Composite
,”
Struct. Health Monit.
,
12
(
3
), pp.
183
196
.
9.
Giurgiutiu
,
V.
,
2007
,
Structural Health Monitoring: With Piezoelectric Wafer Active Sensors
,
Academic Press
,
Cambridge, MA
.
10.
Cho
,
Y.
, and
Rose
,
J. L.
,
1996
, “
A Boundary Element Solution for a Mode Conversion Study on the Edge Reflection of Lamb Waves
,”
J. Acoust. Soc. Am.
,
99
(
4
), pp.
2097
2109
.
11.
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1992
, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
39
(
3
), pp.
381
397
.
12.
Sundararaman
,
S.
, and
Adams
,
D. E.
,
2008
, “
Modeling Guided Waves for Damage Identification in Isotropic and Orthotropic Plates Using a Local Interaction Simulation Approach
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041009
.
13.
Shen
,
Y.
, and
Cesnik
,
C. E.
,
2017
, “
Modeling of Nonlinear Interactions Between Guided Waves and Fatigue Cracks Using Local Interaction Simulation Approach
,”
Ultrasonics
,
74
, pp.
106
123
.
14.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2016
, “
Combined Analytical FEM Approach for Efficient Simulation of Lamb Wave Damage Detection
,”
Ultrasonics
,
69
, pp.
116
128
.
15.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.
16.
Komatitsch
,
D.
, and
Vilotte
,
J.-P.
,
1998
, “
The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures
,”
Bull. Seismol. Soc. Am.
,
88
(
2
), pp.
368
392
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/88/2/368/120304/the-spectral-element-method-an-efficient-tool-to?redirectedFrom=PDF
17.
Komatitsch
,
D.
,
Erlebacher
,
G.
,
Göddeke
,
D.
, and
Michéa
,
D.
,
2010
, “
High-Order Finite-Element Seismic Wave Propagation Modeling With MPI on a Large GPU Cluster
,”
J. Comput. Phys.
,
229
(
20
), pp.
7692
7714
.
18.
Kudela
,
P.
,
Żak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2007
, “
Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method
,”
J. Sound Vib.
,
302
(
4
), pp.
728
745
.
19.
Zak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2006
, “
Propagation of In-Plane Waves in an Isotropic Panel With a Crack
,”
Finite Elem. Anal. Des.
,
42
(
11
), pp.
929
941
.
20.
Peng
,
H.
,
Meng
,
G.
, and
Li
,
F.
,
2009
, “
Modeling of Wave Propagation in Plate Structures Using Three-Dimensional Spectral Element Method for Damage Detection
,”
J. Sound Vib.
,
320
(
4–5
), pp.
942
954
.
21.
Żak
,
A.
, and
Krawczuk
,
M.
,
2011
, “
Certain Numerical Issues of Wave Propagation Modelling in Rods by the Spectral Finite Element Method
,”
Finite Elem. Anal. Des.
,
47
(
9
), pp.
1036
1046
.
22.
Rose
,
J. L.
,
2014
,
Ultrasonic Guided Waves in Solid Media
,
Cambridge University Press
,
New York
.
23.
Taylor
,
R. L.
,
1972
, “
On Completeness of Shape Functions for Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
4
(
1
), pp.
17
22
.
24.
Fromme
,
P.
, and
Sayir
,
M. B.
,
2002
, “
Measurement of the Scattering of a Lamb Wave by a Through Hole in a Plate
,”
J. Acoust. Soc. Am.
,
111
(
3
), pp.
1165
1170
.
You do not currently have access to this content.