Composite materials are becoming ever more popular in an increasing number of applications. This because of their many advantages, amongst others the possibility to create a new material of given characteristics in a quite simple way by changing either the type of matrix, or reinforcement, and/or rearranging the reinforcement in a different way. Of course, once a new material is created, it is necessary to characterize it to verify its suitability for a specific exploitation. In this context, infrared thermography (IRT) represents a viable means since it is noncontact, nonintrusive, and can be used either for nondestructive evaluation to detect manufacturing defects, or fatigue-induced degradation, or else for monitoring the inline response to applied loads. In this work, IRT is used to investigate different types of composite materials, which involve carbon fibers embedded in a thermoset matrix and either glass or jute fibers embedded in a thermoplastic matrix, which may be neat, or modified by the addition of a percentage of a specific compatibilizing agent. IRT is used with a twofold function. First, for nondestructive evaluation, with the lock-in technique, before and after loading to either assure absence of manufacturing defects, or discover the damage caused by the loads. Second, for visualization of thermal effects, which develop when the material is subjected to impact. The obtained results show that it is possible to follow inline what happens to the material (bending, delamination, and eventual failure) under impact and get information, which may be valuable to deepen the complex impact damaging mechanisms of composites.

References

References
1.
Richardson
,
M. O. W.
, and
Wisheart
,
M. J.
,
1996
, “
Review of Low-Velocity Impact Properties of Composite Materials
,”
Compos. Part A
,
27
(12), pp.
1123
1131
.
2.
Abrate
,
S.
,
1998
,
Impact on Composite Structures
,
Cambridge University Press
,
Cambridge, UK
.
3.
Scheira
,
J.
,
2000
,
Compositional and Failure Analysis of Polymers
,
Wiley
,
Chichester, UK
.
4.
Schoeppner
,
G. A.
, and
Abrate
,
S.
,
2000
, “
Delamination Threshold Loads for Low Velocity Impact on Composite Laminates
,”
Compos. Part A
,
31
(9), pp.
903
915
.
5.
Knauss
,
W. G.
, and
Gonzales
,
L.
,
2001
, “
Global Failure Modes in Composite Structures
,” NASA Langley Research Center, Hampton, VA,
Technical Report
.https://ntrs.nasa.gov/search.jsp?R=20020020093
6.
Elder
,
D. J.
,
Thomson
,
R. S.
,
Nguyen
,
M. Q.
, and
Scott
,
M. L.
,
2004
, “
Review of Delamination Predictive Methods for Low Speed Impact of Composite Laminates
,”
Compos. Struct.
,
66
(1–4), pp.
677
683
.
7.
Feraboli
,
P.
, and
Kedward
,
K. T.
,
2006
, “
A New Composite Structure Impact Performance Assessment Program
,”
Compos. Sci. Technol.
,
66
(10), pp.
1336
1347
.
8.
Meola
,
C.
,
Boccardi
,
S.
,
Carlomagno
,
G. M.
,
Boffa
,
N. D.
,
Monaco
,
E.
, and
Ricci
,
F.
,
2015
, “
Nondestructive Evaluation of Carbon Fibre Reinforced Composites With Infrared Thermography and Ultrasonics
,”
Compos. Struct.
,
134
, pp.
845
853
.
9.
Boccardi
,
S.
,
Boffa
,
N. D.
,
Carlomagno
,
G. M.
,
Maio
,
L.
,
Meola
,
C.
, and
Ricci
,
F.
,
2015
, “
Infrared Thermography and Ultrasonics to Evaluate Composite Materials for Aeronautical Applications
,”
J. Phys. Conf. Ser.
,
658
, p.
012007
.
10.
Maldague
,
X.
,
2002
, “
Introduction to NDT by Active Infrared Thermography
,”
Mater. Eval.
,
6
, pp.
1060
1073
.http://w3.gel.ulaval.ca/~maldagx/r_1221t.pdf
11.
Meola
,
C.
,
Boccardi
,
S.
, and
Carlomagno
,
G. M.
,
2016
,
Infrared Thermography in the Evaluation of Aerospace Composite Materials
,
Woodhead Publishing
, Duxford, UK.
12.
Meola
,
C.
, and
Carlomagno
,
G. M.
,
2009
, “
Infrared Thermography to Impact-Driven Thermal Effects
,”
Appl. Phys. A
,
96
(3), pp.
759
762
.
13.
Meola
,
C.
, and
Carlomagno
,
G. M.
,
2010
, “
Impact Damage in GFRP: New Insights With Infrared Thermography
,”
Compos. Part A
,
41
(12), pp.
1839
1847
.
14.
Meola
,
C.
,
Boccardi
,
S.
,
Boffa
,
N. D.
,
Ricci
,
F.
,
Simeoli
,
G.
,
Russo
,
P.
, and
Carlomagno
,
G. M.
,
2016
, “
New Perspectives on Impact Damaging of Thermoset- and Thermoplastic-Matrix Composites From Thermographic Images
,”
Compos. Struct.
,
152
, pp.
746
754
.
15.
Boccardi
,
S.
,
Boffa
,
N. D.
,
Carlomagno
,
G. M.
,
Meola
,
C.
,
Ricci
,
F.
,
Russo
,
P.
, and
Simeoli
,
G.
,
2017
, “
Infrared Thermography to Impact Damaging of Composite Materials
,”
Proc. SPIE
,
10170
, p.
1017004
.
16.
Busse
,
G.
,
1979
, “
Optoacoustic Phase Angle Measurement for Probing a Metal
,”
Appl. Phys. Lett.
,
35
(10), pp.
759
760
.
17.
Letho
,
A.
,
Jaarinen
,
J.
,
Tiusanen
,
T.
,
Jokinen
,
M.
, and
Luukkala
,
M.
,
1981
, “
Magnitude and Phase in Thermal Wave Imaging
,”
Electron. Lett.
,
17
(11), pp.
364
365
.
18.
Beaudoin
,
J.-L.
,
Merienne
,
E.
,
Danjoux
,
R.
, and
Egee
,
M.
,
1985
, “
Numerical System for Infrared Scanners and Application to the Subsurface Control of Materials by Photothermal Radiometry
,”
Proc. SPIE
,
0590
, pp.
287
292
.
19.
Meola
,
C.
,
Boccardi
,
S.
,
Carlomagno
,
G. M.
,
Boffa
,
N. D.
,
Monaco
,
E.
, and
Ricci
,
F.
,
2016
, “
Experimental Investigation of Impact Damaging of Carbon Fibre Reinforced Composites
,”
19th WCNDT World Conference on Non-Destructive Testing
, Munich, Germany, June 13–17, p.
8
.http://www.ndt.net/article/wcndt2016/papers/we2i3.pdf
20.
Meola
,
C.
,
Boccardi
,
S.
,
Carlomagno
,
G. M.
,
Boffa
,
N. D.
,
Ricci
,
F.
,
Simeoli
,
G.
, and
Russo
,
P.
,
2017
, “
Impact Damaging of Composites Through Online Monitoring and Non-Destructive Evaluation With Infrared Thermography
,”
NDTE Int.
,
85
, pp.
34
42
.
21.
Naik
,
N. K.
,
Chandra Sekher
,
Y.
, and
Sailendra
,
Meduri
,
2000
, “
Damage in Woven-Fabric Composites Subjected to Low-Velocity Impact
,”
Compos. Sci. Technol.
,
60
(5), pp.
731
744
.
22.
Naik
,
N. K.
,
Ramasimha
,
R.
,
Arya
,
H.
,
Prabhu
,
S. V.
, and
ShamaRao
,
N.
,
2001
, “
Impact Response and Damage Tolerance Characteristics of Glass–Carbon/Epoxy Hybrid Composite Plates
,”
Compos. Part B
,
32
(7), pp.
565
574
.
You do not currently have access to this content.