In recent years, there is a much interest in developing of nondestructive testing (NDT) systems using the pulse-echo laser ultrasonics. The key idea is to combine a low-power and short-pulsewidth laser excitation with a continuous sensing laser; and use a scanning mechanism, such as five degrees-of-freedom (5DOF)-axis robot, laser mirror scanner, or motorized linear translation or rotation scanner stage, to scan the combined beam on the structure. In order to optimize the parameters of the excitation laser, a realistic theoretical model of the epicenter displacement in thermo-elastic regime is needed. This paper revisits and revises the study of Spicer and Hurley (1996, “Epicentral and Near Epicenter Surface Displacements on Pulsed Laser Irradiated Metallic Surfaces,” Appl. Phys. Lett., 68(25), pp. 3561–3563) on thermo-elastic model of epicenter displacement with two new contributions: first, we revised Spicer’s model to take into account the optical penetration effect, which was neglected in Spicer’s model; and second, the revised model was used to investigate the effect of laser rise time and beam size to the epicenter displacement. We showed that a pulse laser with short rise time generates an equivalent surface displacement with a pulse laser with long rise time, except a “spike” at the beginning of the epicenter waveform; also when the laser beam size increases, the epicenter displacement decreases. These two conclusions were then validated by experiments.

References

1.
Calder
,
C. A.
, and
Wilcox
,
W. W.
,
1980
, “
Noncontact Material Testing Using Laser Energy Deposition and Interferometry
,”
Mater. Eval.
,
38
(
1
), pp.
86
91
.
2.
Bourkoff
,
E.
, and
Palmer
,
C. H.
,
1986
, “
Noncontact Material Testing Using Low-Energy Optical Generation and Detection of Acoustic Pulses
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
659
667
.
3.
Monchalin
,
J. P.
,
Aussel
,
J. D.
,
Bouchard
,
P.
, and
Héon
,
R.
,
1988
, “
Laser-Ultrasonics for Industrial Applications
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
1607
1614
.
4.
Chang
,
F. H.
,
Drake
,
T. E.
,
Osterkamp
,
M. A.
,
Prowant
,
R. S.
,
Monchalin
,
J. P.
,
Heon
,
R.
,
Bouchard
,
P.
,
Padioleau
,
C.
,
Froom
,
D. A.
,
Frazier
,
W.
, and
Barton
,
J. P.
,
1993
, “
Laser-Ultrasonic Inspection of Honeycomb Aircraft Structures
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
611
616
.
5.
Tittmann
,
B. R.
,
Linebarger
,
R. S.
, and
Addison
,
R. C.
,
1990
, “
Laser-Based Ultrasonics on Gr/Epoxy Composite
,”
J. Nondestruct. Eval.
,
9
(
4
), pp.
229
238
.
6.
Dubois
,
M.
,
Choquet
,
M.
,
Monchalin
,
J. P.
,
Enguehard
,
F.
, and
Bertrand
,
L.
,
1993
, “
Absolute Optical Absorption Spectra in Graphite Epoxy by Fourier Transform Infrared Photoacoustic Spectroscopy
,”
Opt. Eng.
,
32
(
9
), pp.
2255
2260
.
7.
Drake
,
T. E.
, Jr.
,
Yawn
,
K. R.
,
Chuang
,
S. Y.
, and
Osterkamp
,
M. A.
,
1998
, “
Affordable NDE of Aerospace Composites With Laser Ultrasonics
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
587
593
.
8.
Osterkamp
,
M. A.
, and
Kaiser
,
D. L.
,
2008
, “
Application of Laser Ultrasonics for the Non-Destructive Inspection of Complex Composite Aerospace Structures
,”
First International Symposium on Laser Ultrasonics: Science, Technology and Applications
(
LU
), Montreal, QC, Canada, July 16–18.
9.
Bentouhami
,
F.
,
Campagne
,
B.
,
Cuevas
,
E.
,
Drake
,
T.
,
Dubois
,
M.
,
Fraslin
,
T.
,
Piñeiro
,
P.
,
Serrano
,
J.
, and
Voillaume
,
H.
,
2010
, “
LUCIE—A Flexible and Powerful Laser Ultrasonic System for Inspection of Large CFRP Components
,”
Second International Symposium on Laser Ultrasonics
: Science, Technology and Applications (
LU
), Bordeaux, France, July 5–8.
10.
Blouin
,
A.
,
Padioleau
,
C.
,
Neron
,
C.
,
Monchalin
,
J. P.
,
Hojjati
,
M.
, and
Choquet
,
M.
,
2011
, “
A Laser-Ultrasonic Inspection System for Large Structures Fabricated by Automated Fiber Placement
,”
26th Annual Technical Conference of the American Society for Composites and the Second Joint U.S.-Canada Conference on Composites
, Montreal, QC, Canada, Sept. 26–28, pp.
1299
1308
.
11.
Cuevas
,
E.
,
López
,
M.
,
García
,
M.
, and
Ibérica
,
K. R.
,
2012
, “
Ultrasonic Techniques and Industrial Robots: Natural Evolution of Inspection Systems
,”
Fourth International Symposium on NDT in Aerospace
, Augsburg, Germany, Nov. 13–15, Paper No.
Th.2.B.1
.
12.
Vandenrijt
,
J. F.
,
Walter
,
J.
,
Brouillette
,
T.
, and
Georges
,
M.
,
2016
, “
Performances Comparison of a Laser Ultrasonic System Using 10.6 µm Infrared or 532 Nm Visible Generation Beam for the Investigation of CFRP
,”
Fifth International Symposium on Laser-Ultrasonics and Advanced Sensing
, Linz, Austria, July 4–8.
13.
Pelivanov
,
I.
,
Shtokolov
,
A.
,
Wei
,
C. W.
, and
O’Donnell
,
M.
,
2015
, “
A 1 kHz A-Scan Rate Pump-Probe Laser-Ultrasound System for Robust Inspection of Composites
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
62
(
9
), pp.
1696
1703
.
14.
Hong
,
S. C.
,
Abetew
,
A. D.
,
Lee
,
J. R.
, and
Ihn
,
J. B.
,
2017
, “
Three Dimensional Evaluation of Aluminum Plates With Wall-Thinning by Full-Field Pulse-Echo Laser Ultrasound
,”
Opt. Laser Eng.
,
99
, pp.
58
65
.
15.
Ahmed
,
H.
,
Hong
,
S. C.
,
Lee
,
J. R.
,
Park
,
J.
, and
Ihn
,
J. B.
,
2017
, “
Development of Pulse-Echo Ultrasonic Propagation Imaging System and Its Delivery to Korea Air Force
,”
Proc. SPIE
,
10164
, p.
101640A
.
16.
McDonald
,
F. A.
,
1990
, “
Laser-Generated Ultrasound: Toward Realistic Modeling
,”
Photoacoustic and Photothermal Phenomena II
,
Springer
,
Berlin
, pp.
262
268
.
17.
Scruby
,
C. B.
,
Dewhurst
,
R. J.
,
Hutchins
,
D. A.
, and
Palmer
,
S. B.
,
1980
, “
Quantitative Studies of Thermally Generated Elastic Waves in Laser‐Irradiated Metals
,”
J. Appl. Phys.
,
51
(
12
), pp.
6210
6216
.
18.
Rose
,
L. R. F.
,
1984
, “
Point‐Source Representation for Laser‐Generated Ultrasound
,”
J. Acoust. Soc. Am.
,
75
(
3
), pp.
723
732
.
19.
McDonald
,
F. A.
,
1990
, “
On the Precursor in Laser‐Generated Ultrasound Waveforms in Metals
,”
Appl. Phys. Lett.
,
56
(
3
), pp.
230
232
.
20.
Spicer
,
J. B.
, and
Hurley
,
D. H.
,
1996
, “
Epicentral and Near Epicenter Surface Displacements on Pulsed Laser Irradiated Metallic Surfaces
,”
Appl. Phys. Lett.
,
68
(
25
), pp.
3561
3563
.
21.
Arias
,
I.
, and
Achenbach
,
J. D.
,
2003
, “
Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation
,”
Int. J. Solids Struct.
,
40
(
25
), pp.
6917
6935
.
22.
Xu
,
B.
,
Shen
,
Z.
,
Ni
,
X.
, and
Lu
,
J.
,
2004
, “
Numerical Simulation of Laser-Generated Ultrasound by the Finite Element Method
,”
J. Appl. Phys.
,
95
(
4
), pp.
2116
2122
.
23.
Xu
,
B.
,
Shen
,
Z.
,
Wang
,
J.
,
Ni
,
X.
,
Guan
,
J.
, and
Lu
,
J.
,
2006
, “
Thermoelastic Finite Element Modeling of Laser Generation Ultrasound
,”
J. Appl. Phys.
,
99
(
3
), p.
033508
.
24.
Wang
,
J.
,
Shen
,
Z.
,
Xu
,
B.
,
Ni
,
X.
,
Guan
,
J.
, and
Lu
,
J.
,
2007
, “
Numerical Simulation of Laser-Generated Ultrasound in Non-Metallic Material by the Finite Element Method
,”
Opt. Laser Technol.
,
39
(
4
), pp.
806
813
.
25.
Sanderson
,
T.
,
Ume
,
C.
, and
Jarzynski
,
J.
,
1997
, “
Laser Generated Ultrasound: A Thermoelastic Analysis of the Source
,”
Ultrasonics.
,
35
(
2
), pp.
115
124
.
26.
Ready
,
J.
,
1971
,
Effects of High-Power Laser Radiation
,
Academic Press
,
New York
.
27.
Schleichert
,
U.
,
Langenberg
,
K. J.
,
Arnold
,
W.
, and
Fabbender
,
S. A.
,
1989
, “
Quantitative Theory of Laser-Generated Ultrasound
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
, New York, pp.
489
496
.
28.
Dubois
,
M.
,
Enguehard
,
F.
, and
Bertrand
,
L.
,
1994
, “
Analytical One-Dimensional Model to Study the Ultrasonic Precursor Generated by a Laser
,”
Phys. Rev. E
,
50
(
2
), pp.
1548
1551
.
29.
Weeks
,
W. T.
,
1966
, “
Numerical Inversion of Laplace Transforms Using Laguerre Functions
,”
J. ACM
,
13
(
3
), pp.
419
429
.
30.
Shampine
,
L. F.
,
2008
, “
Vectorized Adaptive Quadrature in MATLAB
,”
J. Comput. Appl. Math.
,
211
(
2
), pp.
131
140
.
31.
Scruby
,
C. B.
, and
Drain
,
L. E.
,
1990
,
Laser Ultrasonics Techniques and Applications
,
CRC Press
,
Boca Raton, FL
.
32.
Gibson
,
R. F.
,
2012
,
Principles of Composite Material Mechanics
, 3rd ed.,
CRC Press
, Boca Raton, FL.
33.
Wang
,
X.
, and
Xu
,
X.
,
2001
, “
Thermoelastic Wave Induced by Pulsed Laser Heating
,”
Appl. Phys. A: Mater. Sci. Process.
,
73
(
1
), pp.
107
114
.
You do not currently have access to this content.