This paper presents the local interaction simulation approach (LISA) for efficient modeling of linear and nonlinear ultrasonic guided wave active sensing of complex structures. Three major modeling challenges are considered: material anisotropy with damping effects, nonlinear interactions between guided waves and structural damage, as well as geometric complexity of waveguides. To demonstrate LISA's prowess in addressing such challenges, carefully designed numerical case studies are presented. First, guided wave propagation and attenuation in carbon fiber composite panels are simulated. The numerical results are compared with experimental measurements obtained from scanning laser Doppler vibrometry (SLDV) to illustrate LISA's capability in modeling damped wave propagation in anisotropic medium. Second, nonlinear interactions between guided waves and structural damage are modeled by integrating contact dynamics into the LISA formulations. Comparison with commercial finite element software reveals that LISA can accurately simulate nonlinear ultrasonics but with much higher efficiency. Finally, guided wave propagation in geometrically complex waveguides is studied. The numerical example of multimodal guided wave propagation in a rail track structure with a fatigue crack is presented, demonstrating LISA's versatility to model complex waveguides and arbitrary damage profiles. This paper serves as a comprehensive, systematic showcase of LISA's superb capability for efficient modeling of transient dynamic guided wave phenomena in structural health monitoring (SHM).

References

1.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2014
, “
WaveFormRevealer: An Analytical Framework and Predictive Tool for the Simulation of Multi-Modal Guided Wave Propagation and Interaction With Damage
,”
Struct. Health Monit.
,
13
(
5
), pp.
491
511
.
2.
Rahani
,
E.
, and
Kundu
,
T.
,
2011
, “
Modeling of Transient Ultrasonic Wave Propagation Using the Distributed Point Source Method
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
10
), pp.
2213
2221
.
3.
Glushkov
,
E.
,
Glushkova
,
N.
,
Lammering
,
R.
,
Eremin
,
A.
, and
Neumann
,
M.
,
2011
, “
Lamb Wave Excitation and Propagation in Elastic Plates With Surface Obstacles: Proper Choice of Central Frequency
,”
Smart Mater. Struct.
,
20
(
1
), p.
015020
.
4.
Srivastava
,
A.
,
2009
, “
Quantitative Structural Health Monitoring Using Ultrasonic Guided Waves
,”
Ph.D. thesis
, University of California, San Diego, CA.
5.
Benmeddour
,
F.
,
Treyssede
,
F.
, and
Laguerre
,
L.
,
2011
, “
Numerical Modeling of Guided Wave Interaction With Non-Axisymmetric Cracks in Elastic Cylinders
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
764
774
.
6.
Ahmad
,
Z.
,
Vivar-Perez
,
J.
, and
Gabbert
,
U.
,
2013
, “
Semi-Analytical Finite Element Method for Modeling of Lamb Wave Propagation
,”
CEAS Aeronaut. J.
,
4
(
1
), pp.
21
33
.
7.
Moreau
,
L.
, and
Castaings
,
M.
,
2008
, “
The Use of an Orthogonality Relation for Reducing the Size of Finite Element Models for 3D Guided Waves Scattering Problems
,”
Ultrasonics
,
48
(
5
), pp.
357
366
.
8.
Gresil
,
M.
, and
Giurgiutiu
,
V.
,
2013
, “
Time-Domain Global-Local Concept for Guided-Wave Propagation With Piezoelectric Wafer Active Sensor
,”
J. Intell. Mater. Syst. Struct.
,
24
(
15
), pp.
1897
1911
.
9.
Gresil
,
M.
, and
Giurgiutiu
,
V.
,
2013
, “
Time-Domain Global-Local Prediction of Guided Waves Interaction With Damage
,”
Key Eng. Mater.
,
558
, pp.
116
127
.
10.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2016
, “
Combined Analytical FEM Approach for Efficient Simulation of Lamb Wave Damage Detection
,”
Ultrasonics
,
69
, pp.
116
128
.
11.
Hafezi
,
M. H.
,
Alebrahim
,
R.
, and
Kundu
,
T.
,
2017
, “
Peri-Ultrasound for Modeling Linear and Nonlinear Ultrasonic Response
,”
Ultrasonics
,
80
, pp.
47
57
.
12.
Delsanto
,
P.
,
Whitcombe
,
T.
,
Chaskelis
,
H.
, and
Mignogna
,
R.
,
1992
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials—I: The One-Dimensional Case
,”
Wave Motion
,
16
(
1
), pp.
65
80
.
13.
Delsanto
,
P.
,
Schechter
,
R.
,
Chaskelis
,
H.
,
Mignogna
,
R.
, and
Kline
,
R.
,
1994
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials—II: The Two-Dimensional Case
,”
Wave Motion
,
20
(
4
), pp.
295
314
.
14.
Delsanto
,
P.
,
Schechter
,
R.
, and
Mignogna
,
R.
,
1997
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials—III: The Three-Dimensional Case
,”
Wave Motion
,
26
(
4
), pp.
329
339
.
15.
Lee
,
B.
, and
Staszewski
,
W.
,
2003
, “
Modeling of Lamb Waves for Damage Detection in Metallic Strcutures—Part I: Wave Propagation
,”
Smart Mater. Struct.
,
12
(
5
), pp.
804
814
.
16.
Lee
,
B.
, and
Staszewski
,
W.
,
2003
, “
Modeling of Lamb Waves for Damage Detection in Metallic Structures—Part II: Wave Interactions With Damage
,”
Smart Mater. Struct.
,
12
(
5
), pp.
815
824
.
17.
Nadella
,
K.
, and
Cesnik
,
C. E. S.
,
2012
, “
Numerical Simulation of Wave Propagation in Composite Plates
,”
Proc. SPIE
,
8348
, p.
83480L
.
18.
Nadella
,
K.
, and
Cesnik
,
C. E. S.
,
2013
, “
Local Interaction Simulation Approach for Modeling Wave Propagation in Composite Structures
,”
CEAS Aeronaut. J.
,
4
(
1
), pp.
35
48
.
19.
Sundararaman
,
S.
, and
Adams
,
D.
,
2008
, “
Modeling Guided Waves for Damage Identification in Isotropic and Orthotropic Plates Using a Local Interaction Simulation Approach
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041009
.
20.
Nadella
,
K.
, and
Cesnik
,
C. E. S.
,
2014
, “
Effect of Piezoelectric Actuator Modeling for Wave Generation in LISA
,”
Proc. SPIE
,
9064
, p.
90640Z
.
21.
Obenchain
,
M.
,
Nadella
,
K.
, and
Cesnik
,
C. E. S.
,
2014
, “
Hybrid Global Matrix/Local Interaction Simulation Approach for Wave Propagation in Composites
,”
AIAA J.
,
53
(
2
), pp.
379
393
.
22.
Shen
,
Y.
, and
Cesnik
,
C. E. S.
,
2016
, “
Hybrid Local FEM/Global LISA Modeling of Damped Guided Wave Propagation in Complex Composite Structures
,”
Smart Mater. Struct.
,
25
(
9
), p.
095021
.
23.
Packo
,
P.
,
Bielak
,
T.
,
Spencer
,
A. B.
,
Uhl
,
T.
,
Staszewski
,
W. J.
,
Worden
,
K.
,
Barszcz
,
T.
,
Russek
,
P.
, and
Wiatr
,
K.
,
2015
, “
Numerical Simulations of Elastic Wave Propagation Using Graphical Processing Units—Comparative Study of High-Performance Computing Capabilities
,”
Comput. Methods Appl. Mech. Eng.
,
290
(
1
), pp.
98
126
.
24.
Kijanka
,
P.
,
Radecki
,
R.
,
Packo
,
P.
,
Staszewski
,
W.
, and
Uhl
,
T.
,
2013
, “
GPU-Based Local Interaction Simulation Approach for Simplified Temperature Effect Modelling in Lamb Wave Propagation Used for Damage Detection
,”
Smart Mater. Struct.
,
22
(
3
), p.
035014
.
25.
Packo
,
P.
,
Bielak
,
T.
,
Spencer
,
A. B.
,
Staszewski
,
W.
,
Uhl
,
T.
, and
Worden
,
K.
,
2012
, “
Lamb Wave Propagation Modelling and Simulation Using Parallel Processing Architecture and Graphical Cards
,”
Smart Mater. Struct.
,
21
(
7
), p.
075001
.
26.
Shen
,
Y.
, and
Cesnik
,
C. E. S.
,
2017
, “
Modeling of Nonlinear Interactions Between Guided Waves and Fatigue Cracks Using Local Interaction Simulation Approach
,”
Ultrasonics
,
74
, pp.
106
123
.
27.
Biwa
,
S.
,
Nakajima
,
S.
, and
Ohno
,
N.
,
2004
, “
On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-Dependent Interface Stiffness
,”
ASME J. Appl. Mech.
,
71
(
40
), pp.
508
515
.
28.
Dutta
,
D.
,
Sohn
,
H.
,
Harries
,
K. A.
, and
Rizzo
,
P.
,
2009
, “
A Nonlinear Acoustic Technique for Crack Detection in Metallic Structures
,”
Struct. Health Monit.
,
8
(
3
), pp.
251
262
.
29.
Su
,
Z.
,
Zhou
,
C.
,
Hong
,
M.
,
Cheng
,
L.
,
Wang
,
Q.
, and
Qing
,
X.
,
2014
, “
Acousto-Ultrasonics-Based Fatigue Damage Characterization: Linear Versus Nonlinear Signal Features
,”
Mech. Syst. Signal Process.
,
45
(
1
), pp.
225
239
.
30.
Nadella
,
K. S.
,
2014
, “
Numerical Simulation of Guided Waves in Thin Walled Composite Structures
,”
Ph.D. dissertation
, University of Michigan, ProQuest Dissertations Publishing, Ann Arbor, MI, p.
3624723
.
31.
Kingery
,
R.
,
Berg
,
R.
, and
Schillinger
,
E.
,
1967
,
Men and Ideas in Engineering
,
University of Illinois Press
,
Champaign, IL
.
You do not currently have access to this content.