Piezoelectric sensors are used in many structural health monitoring (SHM) methods to interrogate the condition of the structure to which the sensors are affixed or embedded. Among SHM methods utilizing thin wafer piezoelectric sensors, embedded ultrasonics is seen as a promising approach to assess condition of space structures. If SHM is to be implemented in space vehicles, it is imperative to determine the effects of the extreme space environment on piezoelectric sensors in order to discern between actual structural damage and environmental effects. The near-Earth space environment comprises extreme temperatures, vacuum, atomic oxygen, microgravity, micrometeoroids and debris, and significant amounts of radiation. Gamma radiation can be used to emulate the space radiation environment. In this contribution, the effects of gamma radiation on piezoelectric ceramic sensors are investigated for equivalent gamma radiation exposure of more than a year on low Earth orbit (LEO). Two experiments were conducted in which cobalt-60 was utilized as the source of radiation. Freely supported piezoelectric sensors were exposed to increasing levels of gamma radiation. Impedance data were collected for the sensors after each radiation exposure. The results show that piezoelectric ceramic material is affected by gamma radiation. Over the course of increasing exposure levels to cobalt-60, the impedance frequencies of the free sensors increased with each absorbed dose. The authors propose that the mechanism causing these impedance changes is due to gamma rays affecting piezoelectric, electric, and elastic constants of the piezoelectric ceramic. A theoretical model describing observed effects is presented.

References

1.
Richards
,
W. L.
,
Madaras
,
E.
,
Prosser
,
W. H.
, and
Studor
,
G.
,
2013
, “
NASA Applications of Structural Health Monitoring Technology
,” Ninth International Workshop on Structural Health Monitoring, Palo Alto, CA, Sept. 10–12, Paper No.
DFRC-E-DAA-TN11102
.
2.
Yoder
,
T. B.
, and
Greene
,
N.
,
2010
, “
Inspection for Damage to Carbon/Epoxy Composite Overwrapped Pressure Vessels
,” NASA Johnson Space Center, Houston, TX, Technical Report No.
JSC-CN-24028
.
3.
O'Dell
,
K. P.
,
2001
, “
Automated Inspection of the RSRM O-Ring Seal Surface
,”
AIAA
Paper No. 2001-3278.
4.
Nurge
,
M.
,
Youngquist
,
R.
, and
Dyer
,
D.
,
2013
, “
Surface Inspection Tool for Optical Detection of Surface Defects
,” NASA Kennedy Space Center, Cocoa Beach, FL, Technical Report No.
KSC-13580
.
5.
Arritt
,
B. J.
,
Robertson
,
L. M.
,
Williams
,
A. D.
,
Henderson
,
B. K.
,
Buckley
,
S. J.
,
Ganley
,
J. M.
,
Welsh
,
J. S.
,
Ouyang
,
L.
,
Beard
,
S.
,
Clayton
,
E. H.
,
Todd
,
M. D.
,
Doyle
,
D.
, and
Zagrai
,
A.
,
2008
, “
Structural Health Monitoring: An Enabler for Responsive Satellites
,”
AIAA
Paper No. 2008-2166.
6.
Doyle
,
D.
,
Zagrai
,
A. N.
,
Arritt
,
B.
, and
Cakan
,
H.
,
2010
, “
Damage Detection in Bolted Space Structures
,”
J. Intell. Mater. Syst. Struct.
,
21
(
3
), pp.
251
264
.
7.
Musgrave
,
G.
,
Larsen
,
A.
, and
Sgobba
,
T.
,
2009
,
Safety Design for Space Systems
,
Elsevier
,
Oxford, UK
.
8.
Park
,
G.
,
Kabeya
,
K.
,
Cudney
,
H. H.
, and
Inman
,
D. J.
,
1999
, “
Impedance-Based Structural Health Monitoring for Temperature Varying Applications
,”
Jpn. Soc. Mech. Eng.
,
42
(
2
), pp.
249
258
.
9.
Roy
,
S.
,
Lonkar
,
K.
,
Janapati
,
V.
, and
Chang
,
F.-K.
,
2014
, “
A Novel Physics-Based Temperature Compensation Model for Structural Health Monitoring Using Ultrasonic Guided Waves
,”
Struct. Health Monit.
,
13
(
3
), pp.
321
342
.
10.
Anderson
,
M. L.
,
Zagrai
,
A. N.
,
Doyle
,
D.
,
Hengeveld
,
D.
, and
Wilson
,
M. R.
,
2015
, “
Consideration of Thermal Effects in Electro-Mechanical Impedance Measurement for Space Structures
,”
Tenth International Workshop on Structural Health Monitoring
(
IWSHM
), Stanford, CA, Sept. 1–3, pp.
2867
2874
.
11.
Zagrai
,
A. N.
,
Demidovich
,
N.
,
Cooper
,
B.
,
Schlavin
,
J.
,
White
,
C.
,
Kessler
,
S.
,
MacGillivray
,
J.
,
Chesebrough
,
S.
,
Magnusion
,
L.
,
Puckett
,
L.
,
Tena
,
K.
,
Gutierrez
,
J.
,
Trujillo
,
B.
,
Siler
,
D.
, and
Gonzales
,
T.
,
2015
, “
Structural Health Monitoring During Suborbital Spaceflight
,”
66th International Astronautical Congress
, Jerusalem, Israel, Oct. 12–16, Paper No.
C2,5,3,x29660
.
12.
Sajid
,
M.
,
Chechenin
,
N. G.
,
Torres
,
F. S.
,
Khan
,
E. U.
, and
Agha
,
S.
,
2015
, “
Space Radiation Environment Prediction for VLSI Microelectronics Devices Onboard a LEO Satellite Using OMERE-TRAD Software
,”
Adv. Space Res.
,
56
(
2
), pp.
314
324
.
13.
O'Brien
,
T. P.
,
Masur
,
J. E.
,
Guild
,
T. B.
, and
Looper
,
M. D.
,
2015
, “
Using Polar-Orbiting Environmental Satellite Data to Specify the Radiation Environment Up to 1200 km Altitude
,”
Space Weather
,
13
(
8
), pp.
434
445
.
14.
Price
,
W. E.
,
1965
, “
The Simulation of Space Radiation Damage to Spacecraft Systems
,”
IEEE Trans. Nucl. Sci.
,
12
(6), pp. 2–7.
15.
ESA
,
1993
, “
European Space Agency: The Radiation Design Handbook
,” ESA Publications Division, Noordwijk, The Netherlands.
16.
Zagrai
,
A. N.
, and
Giurgiutiu
,
V.
,
2009
, “
Electromechanical Impedance Modeling
,”
Encyclopedia of Structural Health Monitoring
,
Wiley
,
Chichester, UK
.
17.
Glower
,
D. D.
,
Hester
,
D. L.
, and
Warnke
,
D. F.
,
1965
, “
Effects of Radiation-Induced Damage Centers in Lead Zirconate Titanate Ceramics
,”
J. Am. Ceram. Soc.
,
48
(
8
), pp.
417
421
.
18.
Broomfield
,
G. H.
,
1980
, “
The Effect of Low-Fluence Neutron Irradiation on Silver-Electroded Lead-Zirconate-Titanate Piezoelectric Ceramics
,”
J. Nucl. Mater.
,
91
(
1
), pp.
23
34
.
19.
Meleshko
,
Y. P.
,
Karpechko
,
S. G.
,
Leont'ev
,
G. K.
,
Nalivaev
,
V. I.
,
Nikiforov
,
A. D.
, and
Smirnov
,
V. M.
,
1985
, “
Radiation Resistance of the Piezoelectric Ceramics TsTS-21 and TNV-1
,”
At. Energ.
,
61
(
1
), pp.
561
564
.
20.
Schwank
,
J. R.
,
Nasby
,
R. D.
,
Miller
,
S. L.
,
Rodgers
,
M. S.
, and
Dressendorfer
,
P. V.
,
1990
, “
Total-Dose Radiation-Induced Degradation of Thin Film Ferroelectric Capacitors
,”
IEEE Trans. Nucl. Sci.
,
37
(
6
), pp.
1703
1712
.
21.
Moore
,
R. A.
,
Benedetto
,
J.
, and
Rod
,
B. J.
,
1993
, “
Total Dose Effect on Ferroelectric PZT Capacitors Used as Non-Volatile Storage Elements
,”
IEEE Trans. Nucl. Sci.
,
40
(
6
), pp.
1591
1596
.
22.
Miclea
,
C.
,
Tanasoiu
,
C.
,
Miclea
,
C. F.
,
Spanulescu
,
I.
, and
Cioangher
,
M.
,
2005
, “
Effect of Neutron Irradiation on Some Piezoelectric Properties of PZT Type Ceramics
,”
J. Phys. IV
,
128
, pp.
115
120
.
23.
Lin
,
B.
,
Gresil
,
M.
,
Giurgiutiu
,
V.
,
Knight
,
T.
,
Mendez-Torres
,
A. E.
, and
Yu
,
L.
,
2014
, “
Nuclear Environmental Effects on Piezoelectric Wafer Active Sensors Based Acousto-Ultrasonic Sensing System
,” International Congress on Advances in Nuclear Power Plants (ICAPP), Charlotte, NC, Apr. 6–9, Paper No.
14304
.
24.
Giurgiutiu
,
V.
,
Postolache
,
C.
, and
Tudose
,
M.
,
2016
, “
Radiation, Temperature, and Vacuum Effects on Piezoelectric Wafer Active Sensors
,”
Smart Struct. Syst.
,
25
, p. 035024.
25.
Howard
,
J. W.
, Jr.
, and
Hardage
,
D. M.
,
1999
, “
Space Environments Interactions: Space Radiation and Its Effects on Electronic Systems
,” Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, AL, Technical Report No.
NASA/TP-1999-209373
.
26.
Lin
,
B.
,
Gresil
,
M.
,
Giurgiutiu
,
V.
, and
Mendez-Torres
,
A. E.
,
2012
, “
Structural Health Monitoring With Piezoelectric Wafer Active Sensors Exposed to Irradiation Effects
,”
ASME
Paper No. PVP2012-78848.
27.
Ikeda
,
T.
,
1996
,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
Oxford, UK
.
28.
Jordan
,
T. L.
, and
Ounaies
,
Z.
,
2001
, “
Piezoelectric Ceramics Characterization
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA/CR-2001-211225
.
29.
ANSI/IEEE
,
1987
, “
IEEE Standard on Piezoelectricity
,” IEEE, New York, ANSI/IEEE Standard No.
176-1987
.
You do not currently have access to this content.