Advanced composite materials are being increasingly used in state-of-the-art aircraft and aerospace structures due to their many desirable properties. However, such composite materials are highly susceptible to developing internal damage. Thus, safe operation of such structures requires a comprehensive program of effective nondestructive inspection and maintenance of their critical load bearing components before the defects grow and become unstable, resulting in failure of the entire structure. Ultrasonic guided wave-based methods have the potential to significantly improve current inspection techniques for large plate-like structural components due to the waves' large propagation range and sensitivity to defects in their propagation path. The application of guided waves for nondestructive evaluation (NDE) of real structures, however, requires a thorough understanding of the characteristics of guided waves in composite structures in the presence and absence of any defects. In this paper, the interaction of guided waves with a core–skin disbond in a composite sandwich panel is studied using a semi-analytical method, numerical simulations, and laboratory experiments. It is shown that the disbond causes complex mode conversion at its leading and trailing edges. The theoretical findings are verified with laboratory experiments, and the applicability of the proposed pitch–catch setup for NDE of complex composite structures for damage detection is discussed.

References

1.
Gunn
,
L.
,
2000
, “
Operational Experience With Health Monitoring on the Delta II Program
,”
Structural Health Monitoring
,
F.-K.
Chang
, ed.,
Technomic
,
Lancaster, PA
, pp.
133
141
.
2.
Diamanti
,
K.
, and
Soutis
,
C.
,
2010
, “
Structural Health Monitoring Techniques for Aircraft Composite Structures
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
342
352
.
3.
Banerjee
,
S.
,
Ricci
,
F.
,
Monaco
,
E.
,
Lecce
,
L.
, and
Mal
,
A.
,
2007
, “
Autonomous Impact Damage Monitoring in a Stiffened Composite Panel
,”
J. Intell. Mater. Syst. Struct.
,
18
(
6
), pp.
623
633
.
4.
Reusser
,
R. S.
,
Holland
,
S. D.
,
Chimenti
,
D. E.
, and
Roberts
,
R. A.
,
2014
, “
Reflection and Transmission of Guided Ultrasonic Plate Waves by Vertical Stiffeners
,”
J. Acoust. Soc. Am.
,
136
(
1
), pp.
170
182
.
5.
Schaal
,
C.
, and
Mal
,
A.
,
2016
, “
Lamb Wave Propagation in a Plate With Step Discontinuities
,”
Wave Motion
,
66
, pp.
177
189
.
6.
Schaal
,
C.
,
Zhang
,
S.
,
Samajder
,
H.
, and
Mal
,
A.
,
2017
, “
An Analytical Study of the Scattering of Ultrasonic Guided Waves at a Delamination-Like Discontinuity in a Plate
,”
Proc. Inst. Mech. Eng., Part C
,
231
(6), pp. 2947–2960.
7.
Lamb
,
H.
,
1917
, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. London. Ser. A
,
93
(
648
), pp.
114
128
.
8.
Ewing
,
W.
,
Jardetzky
,
W.
, and
Press
,
F.
,
1957
,
Elastic Waves in Layered Media
,
McGraw-Hill
,
New York
.
9.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,
Amsterdam
,
North Holland, The Netherlands
.
10.
Rose
,
J. L.
,
2004
,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
,
New York
.
11.
Mal
,
A. K.
, and
Lih
,
S.-S.
,
1992
, “
Elastodynamic Response of a Unidirectional Composite Laminate to Concentrated Surface Loads––Part I
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
878
886
.
12.
Lih
,
S.-S.
, and
Mal
,
A. K.
,
1992
, “
Elastodynamic Response of a Unidirectional Composite Laminate to Concentrated Surface Loads––Part II
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
887
892
.
13.
Treyssède
,
F.
,
2015
, “
Three-Dimensional Modeling of Elastic Guided Waves Excited by Arbitrary Sources in Viscoelastic Multilayered Plates
,”
Wave Motion
,
52
, pp.
33
53
.
14.
Shkerdin
,
G.
, and
Glorieux
,
C.
,
2004
, “
Lamb Mode Conversion in a Plate With a Delamination
,”
J. Acoust. Soc. Am.
,
116
(
4
), pp.
2089
2100
.
15.
Chakrapani
,
S. K.
, and
Dayal
,
V.
,
2014
, “
The Interaction of Rayleigh Waves With Delaminations in Composite Laminates
,”
J. Acoust. Soc. Am.
,
135
(
5
), pp.
2646
2653
.
16.
Tian
,
Z.
,
Yu
,
L.
, and
Leckey
,
C.
,
2015
, “
Delamination Detection and Quantification on Laminated Composite Structures With Lamb Waves and Wavenumber Analysis
,”
J. Intell. Mater. Syst. Struct.
,
26
(
13
), pp.
1723
1738
.
17.
Mal
,
A.
,
Ricci
,
F.
,
Samajder
,
H.
, and
Baid
,
H.
,
2013
, “
NDE of Composite Structures Using Ultrasonic Guided Waves
,”
Proc. SPIE
,
8695
, p.
86950E
.
18.
Samajder
,
H.
,
Baid
,
H.
,
Ricci
,
F.
, and
Mal
,
A.
,
2013
, “
Lamb Waves in a Honeycomb Composite Sandwich Plate
,”
Proc. SPIE
,
8695
, p.
869505
.
19.
Schaal
,
C.
,
Samajder
,
H.
,
Baid
,
H.
, and
Mal.
,
A.
,
2015
, “
Rayleigh to Lamb Wave Conversion at a Delamination-Like Crack
,”
J. Sound Vib.
,
353
, pp.
150
163
.
20.
Mace
,
B. R.
,
Duhamel
,
D.
,
Brennan
,
M. J.
, and
Hinke
,
L.
,
2005
, “
Finite Element Prediction of Wave Motion in Structural Waveguides
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2835
2843
.
21.
Schaal
,
C.
,
Bischoff
,
S.
, and
Gaul
,
L.
,
2013
, “
Analysis of Wave Propagation in Periodic 3D Waveguides
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
691
700
.
22.
Manconi
,
E.
, and
Mace
,
B. R.
,
2009
, “
Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method
,”
J. Acoust. Soc. Am.
,
125
(
1
), pp.
154
163
.
23.
Mace
,
B. R.
, and
Manconi
,
E.
,
2008
, “
Modelling Wave Propagation in Two-Dimensional Structures Using Finite Element Analysis
,”
J. Sound Vib.
,
318
(
45
), pp.
884
902
.
24.
Liu
,
H.
,
Finnveden
,
S.
,
Barbagallo
,
M.
, and
Lopez Arteaga
,
I.
,
2014
, “
Wave Propagation in Sandwich Panels With a Poroelastic Core
,”
J. Acoust. Soc. Am.
,
135
(
5
), pp.
2683
2693
.
25.
Castaings
,
M.
,
Clezio
,
E. L.
, and
Hosten
,
B.
,
2002
, “
Modal Decomposition Method for Modeling the Interaction of Lamb Waves With Cracks
,”
J. Acoust. Soc. Am.
,
112
(
6
), pp.
2567
2582
.
26.
Sprenger
,
H.
,
2011
,
Modeling, Simulation and Experimental Analysis of Ultrasonic Wave Propagation in Cables With Cracked Wires
,
Der Andere Verlag
,
Toenning, Germany
.
27.
Bischoff
,
S.
,
Schaal
,
C.
, and
Gaul
,
L.
,
2014
, “
Efficient Wave Scattering Analysis for Damaged Cylindrical Waveguides
,”
J. Sound Vib.
,
333
(
18
), pp.
4203
4213
.
28.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
29.
Baid
,
H.
,
Schaal
,
C.
,
Samajder
,
H.
, and
Mal
,
A.
,
2015
, “
Dispersion of Lamb Waves in a Honeycomb Composite Sandwich Panel
,”
Ultrasonics
,
56
, pp.
409
416
.
30.
Mal
,
A. K.
,
1988
, “
Wave Propagation in Layered Composite Laminates Under Periodic Surface Loads
,”
Wave Motion
,
10
(
3
), pp.
257
266
.
31.
Schaal
,
C.
, and
Mal
,
A.
,
2015
, “
Dispersion of Guided Waves in Composite Laminates and Sandwich Panels
,”
Proc. SPIE
,
9438
, p.
94380L
.
32.
Schaal
,
C.
,
Tai
,
S.
, and
Mal
,
A.
,
2017
, “
On the Assumption of Transverse Isotropy of a Honeycomb Sandwich Panel for NDT Applications
,”
Proc. SPIE
,
10170
, p.
1017022
.
33.
Achenbach
,
J.
,
1987
,
Wave Propagation in Elastic Solids
,
Amsterdam
,
North Holland, The Netherlands
.
34.
Wilcox
,
P.
,
Lowe
,
M.
, and
Cawley
,
P.
,
2001
, “
The Effect of Dispersion on Long-Range Inspection Using Ultrasonic Guided Waves
,”
NDT&E Int.
,
34
(
1
), pp.
1
9
.
You do not currently have access to this content.