Rechargeable lithium-ion batteries (LIBs) are now playing crucial roles in power supply and energy storage systems. Among all types of rechargeable batteries available nowadays, LIBs are one of the most important ways to store energy because of their high energy density, high operating voltage, and low rate of self-discharge. Nonetheless, the performance of LIBs could be improved by different design parameters, such as the size of solid particles in the battery composite electrodes. Therefore, this study aims to investigate the effect of the composite electrode particles size on the electrochemical and heat generation of an LIB. A Newman's electrochemical pseudo two-dimenisonal model was used to model the LIB cell. Reversible heat produced through electrochemical reactions was calculated as well as irreversible heat originating from internal resistances in the battery cell. Our results show that smaller sizes of electrode solid particles improve the thermal characteristics of the battery, especially in higher charge and discharge currents (C-rate). Furthermore, as the solid particle sizes decrease, the battery capacity increases for various C-rates in charge and discharge cycles.

References

References
1.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
2.
Hoffert
,
M. I.
,
Caldeira
,
K.
,
Benford
,
G.
,
Criswell
,
D. R.
,
Green
,
C.
,
Herzog
,
H.
,
Jain
,
A. K.
,
Kheshgi
,
H. S.
,
Lackner
,
K. S.
,
Lewis
,
J. S.
,
Lightfoot
,
H. D.
,
Manheimer
,
W.
,
Mankins
,
J. C.
,
Mauel
,
M. E.
,
John Perkins
,
L.
,
Schlesinger
,
M. E.
,
Volk
,
T.
, and
Wigley
,
T. M. L.
,
2002
, “
Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet
,”
Science
,
298
(
5595
), pp.
981
987
.
3.
Divy
,
K. C.
, and
Østergaard
,
J.
,
2009
, “
Battery Energy Storage Technology for Power Systems—An Overview
,”
Electr. Power Syst. Res.
,
79
(
4
), pp.
511
520
.
4.
Park
,
M.
,
Zhang
,
X.
,
Chung
,
M.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Source
,
195
(
24
), pp.
7904
7924
.
5.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
.
6.
Song
,
M. K.
,
Park
,
S.
,
Alamgir
,
F. M.
,
Cho
,
J.
, and
Liu
,
M.
,
2011
, “
Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: The Latest Developments, Challenges, and Perspectives
,”
Mater. Sci. Eng.
,
72
(
11
), pp.
203
252
.
7.
Bruce
,
P. G.
,
Scrosati
,
B.
, and
Tarascon
,
J. M.
,
2008
, “
Nanomaterials for Rechargeable Lithium Batteries
,”
Angew. Chem. Int. Ed.
,
47
(
16
), pp.
2930
2946
.
8.
Lee
,
J.-S.
,
Kim
,
S. T.
,
Cao
,
R.
,
Choi
,
N.-S.
,
Liu
,
M.
,
Lee
,
K. T.
, and
Cho
,
J.
,
2011
, “
Metal–Air Batteries With High Energy Density: Li–Air Versus Zn–Air
,”
Adv. Energy Mater.
,
1
(
1
), pp.
34
50
.
9.
Kumaresan
,
K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermal Model for a Li-Ion Cell
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
A164
A171
.
10.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thalera
,
A.
, and
Hackere
,
V.
,
2014
, “
Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
.
11.
Spotnitz
,
R.
, and
Franklin
,
J.
,
2003
, “
Abuse Behavior of High-Power, Lithium-Ion Cells
,”
J. Power Sources
,
113
(
1
), pp.
81
100
.
12.
Yang
,
H.
,
Amiruddin
,
S.
,
Bang
,
H. J.
,
Sun
,
Y.-K.
, and
Prakash
,
J.
,
2006
, “
A Review of Li-Ion Cell Chemistries and Their Potential Use as Hybrid Electric Vehicles
,”
J. Ind. Eng.
,
12
, pp.
12
38
.
13.
Bazinski
,
S. J.
, and
Wang
,
X.
,
2014
, “
Thermal Effect of Cooling the Cathode Grid Tabs of a Lithium-Ion Pouch Cell
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2168
A2174
.
14.
Zolot
,
M. D.
,
Kelly
,
K.
,
Keyser
,
M.
,
Mihalic
,
M.
,
Pesaran
,
A.
, and
Hieronymus
,
A.
,
2001
, “
Thermal Evaluation of the Honda Insight Battery Pack
,”
36th Intersociety Energy Conversion Engineering Conference
, p.
923
.
15.
Ji
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Heating Strategies for Li-Ion Batteries Operated From Subzero Temperatures
,”
Electrochim. Acta
,
107
, pp.
664
674
.
16.
Pinson
,
M. B.
, and
Bazant
,
M. Z.
,
2013
, “
Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
,”
J. Electrochem. Soc.
,
160
, pp.
A243
A250
.
17.
Zhang
,
W.-M.
,
Wu
,
X.-L.
,
Hu
,
J.-S.
,
Guo
,
Y.-G.
, and
Wan
,
L.-J.
,
2008
, “
Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
18
(
24
), pp.
3941
3946
.
18.
Aurbach
,
D.
,
Markovsky
,
B.
,
Salitra
,
G.
,
Markevich
,
E.
,
Talyossef
,
Y.
,
Koltypin
,
M.
,
Nazar
,
L.
,
Ellis
,
B.
, and
Kovacheva
,
D.
,
2007
, “
Review on Electrode–Electrolyte Solution Interactions, Related to Cathode Materials for Li-Ion Batteries
,”
J. Power Sources
,
165
(
2
), pp.
491
499
.
19.
Agubra
,
V.
, and
Fergus
,
J.
,
2013
, “
Lithium Ion Battery Anode Aging Mechanisms
,”
Materials
,
6
(
4
), pp.
1310
1325
.
20.
Viswanathan
,
V. V.
,
Choi
,
D.
,
Wang
,
D.
,
Xu
,
W.
,
Towne
,
S.
,
Williford
,
R. E.
,
Zhang
,
J. G.
,
Liu
,
J.
, and
Yang
,
Z.
,
2010
, “
Effect of Entropy Change of Lithium Intercalation in Cathodes and Anodes on Li-Ion Battery Thermal Management
,”
J. Power Sources
,
195
(
11
), pp.
3720
3729
.
21.
Onda
,
K.
,
Ohshima
,
T.
,
Nakayama
,
M.
,
Fukuda
,
K.
, and
Araki
,
T.
,
2006
, “
Thermal Behavior of Small Lithium-Ion Battery During Rapid Charge and Discharge Cycles
,”
J. Power Sources
,
158
(
1
), pp.
535
542
.
22.
Song
,
L.
,
Li
,
X.
,
Wang
,
Z.
,
Xiong
,
X.
,
Xiao
,
Z.
, and
Zhang
,
F.
,
2012
, “
Thermo-Electrochemical Study on the Heat Effects of LiFePO4 Lithium-Ion Battery During Charge–Discharge Process
,”
Int. J. Electrochem. Sci.
,
7
, pp.
6571
6579
.
23.
Takano
,
K.
,
Saito
,
Y.
,
Kanari
,
K.
,
Nozaki
,
K.
,
Kato
,
K.
,
Neghishi
,
A.
, and
Kato
,
T.
,
2002
, “
Entropy Change in Lithium Ion Cells on Charge and Discharge
,”
J. Appl. Electrochem.
,
32
(
3
), pp.
251
258
.
24.
Chung
,
D. W.
,
Shearing
,
P. R.
,
Brandon
,
N. P.
,
Harris
,
S. J.
, and
Garcia
,
R. E.
,
2014
, “
Particle Size Polydispersity in Li-Ion Batteries
,”
J. Electrochem. Soc.
,
161
(
3
), pp.
A422
A430
.
25.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
26.
Zaghib
,
K.
,
Mauger
,
A.
,
Groult
,
H.
,
Goodenough
,
J. B.
, and
Julien
,
C. M.
,
2013
, “
Advanced Electrodes for High Power Li-Ion Batteries
,”
Materials
,
6
(
3
), pp.
1028
1049
.
27.
Khatibi
,
A. A.
, and
Mortazavi
,
B.
,
2008
, “
A Study on the Nanoindentation Behavior of Single Crystal Silicon Using Hybrid MD-FE Method
,”
Adv. Mat. Res.
,
32
, pp.
259
262
.
28.
Mortazavi
,
B.
,
Khatibi
,
A. A.
, and
Politis
,
C.
,
2009
, “
Molecular Dynamics Investigation of Loading Rate Effects on Mechanical-Failure Behaviour of FCC Metals
,”
J. Comput. Theor. Nanosci.
,
6
(
3
), pp.
644
649
.
29.
Ostadhossein
,
A.
,
Cubuk
,
E. D.
,
Tritsaris
,
G. A.
,
Kaxiras
,
E.
,
Zhang
,
S.
, and
van Duin
,
A. C.
,
2015
, “
Stress Effects on the Initial Lithiation of Crystalline Silicon Nanowires: Reactive Molecular Dynamics Simulations Using ReaxFF
,”
Phys. Chem. Chem. Phys.
,
17
(
5
), pp.
3832
3840
.
30.
Islam
,
M. M.
,
Ostadhossein
,
A.
,
Borodin
,
O.
,
Yeates
,
A. T.
,
Tipton
,
W. W.
,
Hennig
,
R. G.
,
Kumar
,
N.
, and
van Duin
,
A. C.
,
2015
, “
ReaxFF Molecular Dynamics Simulations on Lithiated Sulfur Cathode Materials
,”
Phys. Chem. Chem. Phys.
,
17
(
5
), pp.
3383
3393
.
31.
Shodja
,
H.
,
Tabatabaei
,
M.
,
Ostadhossein
,
A.
, and
Pahlevani
,
L.
,
2013
, “
Elastic Fields of Interacting Point Defects Within an Ultra-Thin FCC Film Bonded to a Rigid Substrate
,”
Open Eng.
,
3
(4), pp.
707
721
.
32.
Shodja
,
H. M.
,
Tabatabaei
,
M.
,
Pahlevani
,
L.
, and
Ostadhossein
,
A.
,
2013
, “
Diffusion of a Self-Interstitial Atom in an Ultrathin FCC Film Bonded to a Rigid Substrate
,”
J. Mech. Behav. Mater.
,
21
, pp.
161
168
.
33.
Mortazavi
,
B.
,
Pötschke
,
M.
, and
Cuniberti
,
G.
,
2014
, “
Multiscale Modeling of Thermal Conductivity of Polycrystalline Graphene Sheets
,”
Nanoscale
,
6
(
6
), pp.
3344
3352
.
34.
Mortazavi
,
B.
,
Hassouna
,
F.
,
Laachachi
,
A.
,
Rajabpour
,
A.
,
Ahzi
,
S.
,
Chapron
,
D.
,
Toniazzo
,
V.
, and
Ruch
,
D.
,
2013
, “
Experimental and Multiscale Modeling of Thermal Conductivity and Elastic Properties of PLA/Expanded Graphite Polymer
,”
Thermochim. Acta
,
552
, pp.
106
113
.
35.
Mortazavi
,
B.
, and
Cuniberti
,
G.
,
2014
, “
Mechanical Properties of Polycrystalline Boron–Nitride Nanosheets
,”
RSC Adv.
,
4
(
37
), pp.
19137
19143
.
36.
Cai
,
L.
, and
Ralph White
,
E.
,
2011
, “
Mathematical Modeling of a Lithium Ion Battery With Thermal Effects in COMSOL Inc. Multiphysics (MP) Software
,”
J. Power Sources
,
196
(
14
), pp.
5985
5989
.
37.
Kam
,
K. C.
, and
Doeff
,
M. M.
,
2012
, “
Electrode Materials for Lithium Ion Batteries
,”
Mater. Matters
,
7
, pp.
56
60
.
38.
Kim
,
G. H.
, and
Smith
,
K.
,
2008
, “
Three Dimensional Lithium Ion Battery Model Understanding Spatial Variations in Battery Physics to Improve Cell Design, Operational Strategy, and Management
,”
4th International Symposium on Large Lithium Ion Battery Technology and Application
, Tampa, FL.
39.
Ramadesigan
,
V.
,
Northrop
,
P. W. C.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
You do not currently have access to this content.