Being a natural polymer, DNA attracts extensive attention and possesses great potential to open a new way for researches of biomedical or material science. In the past few decades, approaches have been developed to bring DNA into the realm of bulk materials. In this review, we discussed the progresses achieved for fabrication of novel materials with a large physical dimension from the DNA polymer.

References

References
1.
Amiya
,
T.
, and
Tanaka
,
T.
,
1987
, “
Phase Transitions in Crosslinked Gels of Natural Polymers
,”
Macromolecules
,
20
(
5
), pp.
1162
1164
.
2.
Costa
,
D.
,
Valente
,
A. J.
,
Miguel
,
M. G.
, and
Queiroz
,
J.
,
2011
, “
Gel Network Photodisruption: A New Strategy for the Codelivery of Plasmid DNA and Drugs
,”
Langmuir
,
27
(
22
), pp.
13780
13789
.
3.
Costa
,
D.
,
Queiroz
,
J.
,
Miguel
,
M. G.
, and
Lindman
,
B.
,
2012
, “Swelling Behavior of a New Biocompatible Plasmid DNA Hydrogel,”
Colloids Surf., B
,
92
, pp.
106
112
.
4.
Topuz
,
F.
, and
Okay
,
O.
,
2009
, “Formation of Hydrogels by Simultaneous Denaturation and Cross-Linking of DNA,”
Biomacromolecules
,
10
(
9
), pp.
2652
2661
.
5.
Costa
,
D.
,
Miguel
,
M. G.
, and
Lindman
,
B.
,
2010
, “Swelling Properties of Cross-Linked DNA Gels,”
Adv. Colloid Interface Sci.
,
158
(1–2), pp.
21
31
.
6.
Guo
,
W.
,
Qi
,
X. J.
,
Orbach
,
R.
,
Lu
,
C. H.
,
Freage
,
L.
,
Mironi-Harpaz
,
I.
,
Seliktar
,
D.
,
Yang
,
H. H.
, and
Willner
,
I.
,
2014
, “Reversible Ag+-Crosslinked DNA Hydrogels,”
Chem. Commun.
,
50
(
31
), pp.
4065
4068
.
7.
Tang
,
H.
,
Duan
,
X.
,
Feng
,
X.
,
Liu
,
L.
,
Wang
,
S.
,
Li
,
Y.
, and
Zhu
,
D.
,
2009
, “Fluorescent DNA–Poly(phenylenevinylene) Hybrid Hydrogels for Monitoring Drug Release,”
Chem. Commun.
,
6
, pp.
641
643
.
8.
Lee
,
C. K.
,
Shin
,
S. R.
,
Lee
,
S. H.
,
Jeon
,
J. H.
,
So
,
I.
,
Kang
,
T. M.
,
Kim
,
S. I.
,
Mun
,
J. Y.
,
Han
,
S. S.
,
Spinks
,
G. M.
,
Wallace
,
G. G.
, and
Kim
,
S. J.
,
2008
, “DNA Hydrogel Fiber With Self-Entanglement Prepared by Using an Ionic Liquid,”
Angew. Chem., Int. Ed. Engl.
,
47
(
13
), pp.
2470
2474
.
9.
Um
,
S. H.
,
Lee
,
J. B.
,
Park
,
N.
,
Kwon
,
S. Y.
,
Umbach
,
C. C.
, and
Luo
,
D.
,
2006
, “Enzyme-catalysed assembly of DNA Hydrogel,”
Nat. Mater.
,
5
(
10
), pp.
797
801
.
10.
Park
,
N.
,
Um
,
S. H.
,
Funabashi
,
H.
,
Xu
,
J.
, and
Luo
,
D.
,
2009
, “A Cell-Free Protein-Producing Gel,”
Nat. Mater.
,
8
(
5
), pp.
432
437
.
11.
Li
,
C.
,
Chen
,
P.
,
Shao
,
Y.
,
Zhou
,
X.
,
Wu
,
Y.
,
Yang
,
Z.
,
Li
,
Z.
,
Weil
,
T.
, and
Liu
,
D.
,
2015
, “A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multi-modification Sites,”
Small
,
11
(9–10), pp.
1138
1143
.
12.
Zhang
,
L.
,
Lei
,
J.
,
Liu
,
L.
,
Li
,
C.
, and
Ju
,
H.
,
2013
, “Self-Assembled DNA Hydrogel as Switchable Material for Aptamer-Based Fluorescent Detection of Protein,”
Anal. Chem.
,
85
(
22
), pp.
11077
11082
.
13.
Shin
,
S. W.
,
Park
,
K. S.
,
Jang
,
M. S.
,
Song
,
W. C.
,
Kim
,
J.
,
Cho
,
S. W.
,
Lee
,
J. Y.
,
Cho
,
J. H.
,
Jung
,
S.
, and
Um
,
S. H.
,
2015
, “X-DNA Origami-Networked Core-Supported Lipid Stratum,”
Langmuir
,
31
(
3
), pp.
912
916
.
14.
Seeman
,
N. C.
,
1982
, “Nucleic Acid Junctions and Lattices,”
J. Theor. Biol.
,
99
(
2
), pp.
237
247
.
15.
Winfree
,
E.
,
Liu
,
F.
,
Wenzler
,
L. A.
, and
Seeman
,
N. C.
,
1998
, “Design and Self-Assembly of Two-Dimensional DNA Crystals,”
Nature
,
394
(
6693
), pp.
539
544
.
16.
Endo
,
M.
, and
Sugiyama
,
H.
,
2011
,
Current Protocols in Nucleic Acid Chemistry
, Wiley, New York, Chap. 12.
17.
Rothemund
,
P. W.
,
2006
, “Folding DNA to Create Nanoscale Shapes and Patterns,”
Nature
,
440
(
7082
), pp.
297
302
.
18.
Zhang
,
D. Y.
,
Hariadi
,
R. F.
,
Choi
,
H. M.
, and
Winfree
,
E.
,
2013
, “Integrating DNA Strand-Displacement Circuitry With DNA Tile Self-Assembly,”
Nat. Commun.
,
4
, pp.
1965
1975
.
19.
Ke
,
Y.
,
Ong
,
L. L.
,
Sun
,
W.
,
Song
,
J.
,
Dong
,
M.
,
Shih
,
W. M.
, and
Yin
,
P.
,
2014
, “DNA Brick Crystals With Prescribed Depths,”
Nat. Chem.
,
6
(
11
), pp.
994
1002
.
20.
Martin
,
J. P.
,
Paille
,
P.
,
Caveriviere
,
P.
,
Galaup
,
J. L.
,
Fournie
,
A.
, and
Gouzi
,
J. L.
,
1990
, “Giant Uterine Leiomyoma and Pregnancy. Clinical, Radiologic, Unusual Histopathologic Aspects,”
J. Gynecol., Obstet. Biol. Reprod.
,
19
, pp.
315
320
.
21.
Endo
,
M.
,
Sugita
,
T.
,
Rajendran
,
A.
,
Katsuda
,
Y.
,
Emura
,
T.
,
Hidaka
,
K.
, and
Sugiyama
,
H.
,
2011
, “Two-Dimensional DNA Origami Assemblies Using a Four-Way Connector,”
Chem. Commun.
,
47
(
11
), pp.
3213
3215
.
22.
Rajendran
,
A.
,
Endo
,
M.
,
Katsuda
,
Y.
,
Hidaka
,
K.
, and
Sugiyama
,
H.
,
2011
, “Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly,”
J. Am. Chem. Soc.
,
133
(
37
), pp.
14488
14491
.
23.
Rajendran
,
A.
,
Endo
,
M.
,
Katsuda
,
Y.
,
Hidaka
,
K.
, and
Sugiyama
,
H.
,
2011
, “Programmed Two-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces,”
ACS Nano
,
5
(
1
), pp.
665
671
.
24.
Jungmann
,
R.
,
Scheible
,
M.
,
Kuzyk
,
A.
,
Pardatscher
,
G.
,
Castro
,
C. E.
, and
Simmel
,
F. C.
,
2011
, “DNA Origami-Based Nanoribbons: Assembly, Length Distribution, and Twist,”
Nanotechnology
,
22
(
27
), p.
275301
.
25.
Iinuma
,
R.
,
Ke
,
Y.
,
Jungmann
,
R.
,
Schlichthaerle
,
T.
,
Woehrstein
,
J. B.
, and
Yin
,
P.
,
2014
, “Polyhedra Self-Assembled from DNA Tripods and Characterized With 3D DNA-PAINT,”
Science
,
344
(
6179
), pp.
65
69
.
26.
Zhang
,
H.
,
Chao
,
J.
,
Pan
,
D.
,
Liu
,
H.
,
Huang
,
Q.
, and
Fan
,
C.
,
2012
, “Folding Super-Sized DNA Origami With Scaffold Strands From Long-Range PCR,”
Chem. Commun.
,
48
(
51
), pp.
6405
6407
.
27.
Marchi
,
A. N.
,
Saaem
,
I.
,
Vogen
,
B. N.
,
Brown
,
S.
, and
LaBean
,
T. H.
,
2014
, “Toward Larger DNA Origami,”
Nano Lett.
,
14
(
10
), pp.
5740
5747
.
28.
Zadeh
,
J. N.
,
Steenberg
,
C. D.
,
Bois
,
J. S.
,
Wolfe
,
B. R.
,
Pierce
,
M. B.
,
Khan
,
A. R.
,
Dirks
,
R. M.
, and
Pierce
,
N. A.
,
2011
, “NUPACK: Analysis and Design of Nucleic Acid Systems,”
J. Comput. Chem.
,
32
(
1
), pp.
170
173
.
29.
Sharma
,
J.
,
Chhabra
,
R.
,
Cheng
,
A.
,
Brownell
,
J.
,
Liu
,
Y.
, and
Yan
,
H.
,
2009
, “Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles,”
Science
,
323
(
5910
), pp.
112
116
.
30.
Maune
,
H. T.
,
Han
,
S. P.
,
Barish
,
R. D.
,
Bockrath
,
M.
,
Goddard
,
W. A.
, III,
Rothemund
,
P. W.
, and
Winfree
,
E.
,
2010
, “Self-Assembly of Carbon Nanotubes Into Two-Dimensional Geometries Using DNA Origami Templates,”
Nat. Nanotechnol.
,
5
(
1
), pp.
61
66
.
31.
Tu
,
X.
,
Manohar
,
S.
,
Jagota
,
A.
, and
Zheng
,
M.
,
2009
, “DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes,”
Nature
,
460
(
7252
), pp.
250
253
.
32.
Hazarika
,
P.
,
Ceyhan
,
B.
, and
Niemeyer
,
C. M.
,
2004
, “Reversible Switching of DNA–Gold Nanoparticle Aggregation,”
Angew. Chem., Int. Ed. Engl.
,
43
(
47
), pp.
6469
6471
.
33.
Niemeyer
,
C. M.
,
Ceyhan
,
B.
, and
Hazarika
,
P.
,
2003
, “Oligofunctional DNA–Gold Nanoparticle Conjugates,”
Angew. Chem., Int. Ed. Engl.
,
42
(
46
), pp.
5766
5770
.
34.
Macfarlane
,
R. J.
,
Lee
,
B.
,
Hill
,
H. D.
,
Senesi
,
A. J.
,
Seifert
,
S.
, and
Mirkin
,
C. A.
,
2009
, “Assembly and Organization Processes in DNA-Directed Colloidal Crystallization,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
26
), pp.
10493
10498
.
35.
Soto
,
C. M.
,
Srinivasan
,
A.
, and
Ratna
,
B. R.
,
2002
, “Controlled Assembly of Mesoscale Structures Using DNA as Molecular Bridges,”
J. Am. Chem. Soc.
,
124
(
29
), pp.
8508
8509
.
36.
Mirkin
,
C. A.
,
Letsinger
,
R. L.
,
Mucic
,
R. C.
, and
Storhoff
,
J. J.
,
1996
, “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials,”
Nature
,
382
(
6592
), pp.
607
609
.
37.
Hsiao
,
S. C.
,
Shum
,
B. J.
,
Onoe
,
H.
,
Douglas
,
E. S.
,
Gartner
,
Z. J.
,
Mathies
,
R. A.
,
Bertozzi
,
C. R.
, and
Francis
,
M. B.
,
2009
, “Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns,”
Langmuir
,
25
(
12
), pp.
6985
6991
.
38.
Gartner
,
Z. J.
, and
Bertozzi
,
C. R.
,
2009
, “Programmed Assembly of 3-Dimensional Microtissues With Defined Cellular Connectivity,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
12
), pp.
4606
4610
.
39.
Douglas
,
E. S.
,
Chandra
,
R. A.
,
Bertozzi
,
C. R.
,
Mathies
,
R. A.
, and
Francis
,
M. B.
,
2007
, “Self-Assembled Cellular Microarrays Patterned Using DNA Barcodes,”
Lab Chip
,
7
(
11
), pp.
1442
1448
.
40.
Chandra
,
R. A.
,
Douglas
,
E. S.
,
Mathies
,
R. A.
,
Bertozzi
,
C. R.
, and
Francis
,
M. B.
,
2006
, “Programmable Cell Adhesion Encoded by DNA Hybridization,”
Angew. Chem., Int. Ed. Engl.
,
45
(
6
), pp.
896
901
.
41.
Nykypanchuk
,
D.
,
Maye
,
M. M.
,
van der Lelie
,
D.
, and
Gang
,
O.
,
2008
, “DNA-Guided Crystallization of Colloidal Nanoparticles,”
Nature
,
451
(
7178
), pp.
549
552
.
42.
Xu
,
Y.
,
Wu
,
Q.
,
Sun
,
Y.
,
Bai
,
H.
, and
Shi
,
G.
,
2010
, “Three-Dimensional Self-Assembly of Graphene Oxide and DNA Into Multifunctional Hydrogels,”
ACS Nano
,
4
(
12
), pp.
7358
7362
.
43.
Qi
,
H.
,
Ghodousi
,
M.
,
Du
,
Y.
,
Grun
,
C.
,
Bae
,
H.
,
Yin
,
P.
, and
Khademhosseini
,
A.
,
2013
, “DNA-Directed Self-Assembly of Shape-Controlled Hydrogels,”
Nat. Commun.
,
4
, pp.
2275
2285
.
44.
Lee
,
J. B.
,
Peng
,
S.
,
Yang
,
D.
,
Roh
,
Y. H.
,
Funabashi
,
H.
,
Park
,
N.
,
Rice
,
E. J.
,
Chen
,
L.
,
Long
,
R.
,
Wu
,
M.
, and
Luo
,
D.
,
2012
, “A Mechanical Metamaterial Made From a DNA Hydrogel,”
Nat. Nanotechnol.
,
7
(
12
), pp.
816
820
.
45.
Zhao
,
W.
,
Ali
,
M. M.
,
Brook
,
M. A.
, and
Li
,
Y.
,
2008
, “Rolling Circle Amplification: Applications in Nanotechnology and Biodetection With Functional Nucleic Acids,”
Angew. Chem., Int. Ed. Engl.
,
47
(
34
), pp.
6330
6337
.
46.
Dirks
,
R. M.
, and
Pierce
,
N. A.
,
2004
, “Triggered Amplification by Hybridization Chain Reaction,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
43
), pp.
15275
15278
.
47.
Song
,
W.
,
Zhu
,
K.
,
Cao
,
Z.
,
Lau
,
C.
, and
Lu
,
J.
,
2012
, “Hybridization Chain Reaction-Based Aptameric System for the Highly Selective and Sensitive Detection of Protein,”
Analyst
,
137
(
6
), pp.
1396
1401
.
48.
Tomita
,
N.
,
Mori
,
Y.
,
Kanda
,
H.
, and
Notomi
,
T.
,
2008
, “Loop-Mediated Isothermal Amplification (LAMP) of Gene Sequences and Simple Visual Detection of Products,”
Nat. Protoc.
,
3
(
5
), pp.
877
882
.
49.
Tao
,
Z. Y.
,
Zhou
,
H. Y.
,
Xia
,
H.
,
Xu
,
S.
,
Zhu
,
H. W.
,
Culleton
,
R. L.
,
Han
,
E. T.
,
Lu
,
F.
,
Fang
,
Q.
,
Gu
,
Y. P.
,
Liu
,
Y. B.
,
Zhu
,
G. D.
,
Wang
,
W. M.
,
Li
,
J. L.
,
Cao
,
J.
, and
Gao
,
Q.
,
2011
, “Adaptation of A Visualized Loop-Mediated Isothermal Amplification Technique for Field Detection of Plasmodium Vivax Infection,”
Parasites Vectors
,
4
(
1
), pp.
115
123
.
50.
Wooldridge
,
J. E.
, and
Weiner
,
G. J.
,
2003
, “CpG DNA and Cancer Immunotherapy: Orchestrating the Antitumor Immune Response,”
Curr. Opin. Oncol.
,
15
(
6
), pp.
440
445
.
51.
Dalpke
,
A. H.
, and
Heeg
,
K.
,
2004
, “CpG-DNA as Immune Response Modifier,”
Int. J. Med. Microbiol.
,
294
(
5
), pp.
345
354
.
52.
Rothenfusser
,
S.
,
Tuma
,
E.
,
Wagner
,
M.
,
Endres
,
S.
, and
Hartmann
,
G.
,
2003
, “Recent Advances in Immunostimulatory CpG Oligonucleotides,”
Curr. Opin. Mol. Ther.
,
5
, pp.
98
106
.
53.
Blanks
,
D. A.
,
2007
, “Immunostimulatory Sequences in Immunotherapy,”
Curr. Opin. Otolaryngol. Head Neck Surg.
,
15
(
4
), pp.
281
285
.
54.
Gibson
,
D. G.
,
Glass
,
J. I.
,
Lartigue
,
C.
,
Noskov
,
V. N.
,
Chuang
,
R. Y.
,
Algire
,
M. A.
,
Benders
,
G. A.
,
Montague
,
M. G.
,
Ma
,
L.
,
Moodie
,
M. M.
,
Merryman
,
C.
,
Vashee
,
S.
,
Krishnakumar
,
R.
,
Assad-Garcia
,
N.
,
Andrews-Pfannkoch
,
C.
,
Denisova
,
E. A.
,
Young
,
L.
,
Qi
,
Z. Q.
,
Segall-Shapiro
,
T. H.
,
Calvey
,
C. H.
,
Parmar
,
P. P.
,
Hutchison
,
C. A.
, III
,
Smith
,
H. O.
, and
Venter
,
J. C.
,
2010
, “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome,”
Science
,
329
(
5987
), pp.
52
56
.
You do not currently have access to this content.