A reliable prediction of three-dimensional (3D) protein structures from sequence data remains a big challenge due to both theoretical and computational difficulties. We have previously shown that our kinetostatic compliance method (KCM) implemented into the Protofold package can overcome some of the key difficulties faced by other de novo structure prediction methods, such as the very small time steps required by the molecular dynamics (MD) approaches or the very large number of samples needed by the Monte Carlo (MC) sampling techniques. In this paper, we improve the free energy formulation used in Protofold by including the typically underrated entropic effects, imparted due to differences in hydrophobicity of the chemical groups, which dominate the folding of most water-soluble proteins. In addition to the model enhancement, we revisit the numerical implementation by redesigning the algorithms and introducing efficient data structures that reduce the expected complexity from quadratic to linear. Moreover, we develop and optimize parallel implementations of the algorithms on both central and graphics processing units (CPU/GPU) achieving speed-ups up to two orders of magnitude on the GPU. Our simulations are consistent with the general behavior observed in the folding process in aqueous solvent, confirming the effectiveness of model improvements. We report on the folding process at multiple levels, namely, the formation of secondary structural elements and tertiary interactions between secondary elements or across larger domains. We also observe significant enhancements in running times that make the folding simulation tractable for large molecules.

References

References
1.
Kuriyan
,
J.
,
Konforti
,
B.
, and
Wemmer
,
D.
,
2012
,
The Molecules of Life: Physical and Chemical Principles
,
Garland Science, Taylor and Francis Group
,
New York
.
2.
Anfinsen
,
C. B.
,
1973
, “
Studies on the Principles That Govern the Folding of Protein Chains
,”
Science
,
181
(
4096
), pp.
223
230
.
3.
van Gunsteren
,
W. F.
,
1988
, “
The Role of Computer Simulation Techniques in Protein Engineering
,”
Protein Eng.
,
2
(
1
), pp.
5
13
.
4.
Chirikjian
,
G. S.
,
Kazerounian
,
K.
, and
Mavroidis
,
C.
,
2005
, “
Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
695
698
.
5.
Echenique
,
P.
,
2007
, “
Introduction to Protein Folding for Physicists
,”
Contemp. Phys.
,
48
(
2
), pp.
81
108
.
6.
Chothia
,
C.
, and
Lesk
,
A. M.
,
1986
, “
The Relation Between the Divergence of Sequence and Structure in Proteins
,”
EMBO J.
,
5
(
4
), pp.
823
826
.
7.
Martí-Renom
,
M. A.
,
Stuart
,
A. C.
,
Fiser
,
A.
,
Sánchez
,
R.
,
Melo
,
F.
, and
Šali
,
A.
,
2000
, “
Comparative Protein Structure Modeling of Genes and Genomes
,”
Annu. Rev. Biophys. Biomol. Struct.
,
29
(
1
), pp.
291
325
.
8.
Krieger
,
E.
,
Nabuurs
,
S.
, and
Vriend
,
G.
,
2003
, “
Homology Modeling
,”
Methods Biochem. Anal.
,
44
, pp.
509
524
.
9.
Bowie
,
J.
,
Luthy
,
R.
, and
Eisenberg
,
D.
,
1991
, “
A Method to Identify Protein Sequences That Fold Into a Known Three-Dimensional Structure
,”
Science
,
253
(
5016
), pp.
164
170
.
10.
Ginalski
,
K.
,
Grishin
,
N. V.
,
Godzik
,
A.
, and
Rychlewski
,
L.
,
2005
, “
Practical Lessons From Protein Structure Prediction
,”
Nucleic Acids Res.
,
33
(
6
), pp.
1874
1891
.
11.
Moult
,
J.
,
Fidelis
,
K.
,
Rost
,
B.
,
Hubbard
,
T.
, and
Tramontano
,
A.
,
2005
, “
Critical Assessment of Methods of Protein Structure Prediction (CASP)–Round 6
,”
Proteins: Struct. Funct. Bioinf.
,
61
(
S7
), pp.
3
7
.
12.
Bradley
,
P.
,
Misura
,
K. M. S.
, and
Baker
,
D.
,
2005
, “
Toward High-Resolution de Novo Structure Prediction for Small Proteins
,”
Science
,
309
(
5742
), pp.
1868
1871
.
13.
Schueler-Furman
,
O.
,
Wang
,
C.
,
Bradley
,
P.
,
Misura
,
K.
, and
Baker
,
D.
,
2005
, “
Progress in Modeling of Protein Structures and Interactions
,”
Science
,
310
(
5748
), pp.
638
642
.
14.
Osguthorpe
,
D. J.
,
2000
, “
Ab Initio Protein Folding
,”
Curr. Opin. Struct. Biol.
,
10
(
2
), pp.
146
152
.
15.
Bonneau
,
R.
, and
Baker
,
D.
,
2001
, “
Ab Initio Protein Structure Prediction: Progress and Prospects
,”
Annu. Rev. Biophys. Biomol. Struct.
,
30
(
1
), pp.
173
189
.
16.
Hansmann
,
U. H. E.
, and
Okamoto
,
Y.
,
1994
, “
Comparative Study of Multicanonical and Simulated Annealing Algorithms in the Protein Folding Problem
,”
Physica A
,
212
(
3
), pp.
415
437
.
17.
Simons
,
K.
,
Kooperberg
,
C.
,
Huang
,
E.
, and
Baker
,
D.
,
1997
, “
Assembly of Protein Tertiary Structures From Fragments With Similar Local Sequences Using Simulated Annealing and Bayesian Scoring Functions
,”
J. Mol. Biol.
,
268
(
1
), pp.
209
225
.
18.
Li
,
Z.
, and
Scheraga
,
H.
,
1987
, “
Monte Carlo-Minimization Approach to the Multiple-Minima Problem in Protein Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
84
(
19
), pp.
6611
6615
.
19.
David
,
J.
, and
Doye
,
J. P. K.
,
1997
, “
Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
,”
J. Phys. Chem. A
,
101
(
28
), pp.
5111
5116
.
20.
Nayeem
,
A.
,
Vila
,
J.
, and
Scheraga
,
H. A.
,
2004
, “
A Comparative Study of the Simulated-Annealing and Monte Carlo-With-Minimization Approaches to the Minimum-Energy Structures of Polypeptides:[met]-Enkephalin
,”
J. Comput. Chem.
,
12
(
5
), pp.
594
605
.
21.
Prentiss
,
M.
,
Wales
,
D. J.
, and
Wolynes
,
P. G.
,
2008
, “
Protein Structure Prediction Using Basin-Hopping
,”
J. Chem. Phys.
,
128
(
22
), p.
225106
.
22.
Schug
,
A.
, and
Wenzel
,
W.
,
2004
, “
Predictive in Silico All-Atom Folding of a Four-Helix Protein With a Free-Energy Model
,”
J. Am. Chem. Soc.
,
126
(
51
), pp.
16736
16737
.
23.
Schug
,
A.
, and
Wenzel
,
W.
,
2006
, “
An Evolutionary Strategy for All-Atom Folding of the 60-Amino-Acid Bacterial Ribosomal Protein l20
,”
Biophys. J.
,
90
(
12
), pp.
4273
4280
.
24.
Verma
,
A.
,
Gopal
,
S. M.
,
Oh
,
J. S.
,
Lee
,
K. H.
, and
Wenzel
,
W.
,
2007
, “
All-Atom de Novo Protein Folding With a Scalable Evolutionary Algorithm
,”
J. Comput. Chem.
,
28
(
16
), pp.
2552
2558
.
25.
Abagyan
,
R. A.
, and
Totrov
,
M.
,
1994
, “
Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins
,”
J. Mol. Biol.
,
235
(
3
), pp.
983
1002
.
26.
Abagyan
,
R. A.
, and
Totrov
,
M.
,
1999
, “
Ab Initio Folding of Peptides by the Optimal-Bias Monte Carlo Minimization Procedure
,”
J. Comput. Phys.
,
151
(
1
), pp.
402
421
.
27.
Carr
,
J. M.
, and
Wales
,
D. J.
,
2005
, “
Global Optimization and Folding Pathways of Selected α-Helical Proteins
,”
J. Chem. Phys.
,
123
(
23
), p.
234901
.
28.
Klenin
,
K.
,
Strodel
,
B.
,
Wales
,
D.
, and
Wenzel
,
W.
,
2011
, “
Modelling Proteins: Conformational Sampling and Reconstruction of Folding Kinetics
,”
Biochim. Biophys. Acta (BBA) Proteins Proteomics
,
1814
(
8
), pp.
977
1000
.
29.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice Hall
,
Upper Saddle River, NJ
.
30.
Beeman
,
D.
,
1976
, “
Some Multistep Methods for Use in Molecular Dynamics Calculations
,”
J. Comput. Phys.
,
20
(
2
), pp.
130
139
.
31.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
,
1982
, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
(
1
), pp.
637
649
.
32.
Hockney
,
R. W.
, and
Eastwood
,
J. W.
,
1988
,
Computer Simulation Using Particles
,
CRC Press
,
Boca Raton
.
33.
van Gunsteren
,
W.
, and
Berendsen
,
H.
,
1988
, “
A Leap-Frog Algorithm for Stochastic Dynamics
,”
Mol. Simul.
,
1
(
3
), pp.
173
185
.
34.
Ricci
,
A.
, and
Ciccotti
,
G.
,
2003
, “
Algorithms for Brownian Dynamics
,”
Mol. Phys.
,
101
(
12
), pp.
1927
1931
.
35.
Guarnieri
,
F.
, and
Still
,
W.
,
2004
, “
A Rapidly Convergent Simulation Method: Mixed Monte Carlo/Stochastic Dynamics
,”
J. Comput. Chem.
,
15
(
11
), pp.
1302
1310
.
36.
Ciccotti
,
G.
, and
Kalibaeva
,
G.
,
2004
, “
Deterministic and Stochastic Algorithms for Mechanical Systems Under Constraints
,”
Philos. Trans. R. Soc. London
, Ser. A,
362
, pp.
1583
1594
.
37.
Rojnuckarin
,
A.
,
Kim
,
S.
, and
Subramaniam
,
S.
,
1998
, “
Brownian Dynamics Simulations of Protein Folding: Access to Milliseconds Time Scale and Beyond
,”
Proc. Natl. Acad. Sci. U.S.A.
,
95
(
8
), pp.
4288
4292
.
38.
Gabdoulline
,
R. R.
, and
Wade
,
R. C.
,
2001
, “
Protein–Protein Association: Investigation of Factors Influencing Association Rates by Brownian Dynamics Simulations
,”
J. Mol. Biol.
,
306
(
5
), pp.
1139
1155
.
39.
Ando
,
T.
, and
Yamato
,
I.
,
2005
, “
Free Energy Landscapes of Two Model Peptides: α-Helical and β-Hairpin Peptides Explored With Brownian Dynamics Simulation
,”
Mol. Simul.
,
31
(
10
), pp.
683
693
.
40.
Frembgen-Kesner
,
T.
, and
Elcock
,
A. H.
,
2009
, “
Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins
,”
J. Chem. Theory Comput.
,
5
(
2
), pp.
242
256
.
41.
Scheraga
,
H.
,
Khalili
,
M.
, and
Liwo
,
A.
,
2007
, “
Protein-Folding Dynamics: Overview of Molecular Simulation Techniques
,”
Annu. Rev. Phys. Chem.
,
58
(
1
), pp.
57
83
.
42.
Kazerounian
,
K.
,
2004
, “
From Mechanisms and Robotics to Protein Conformation and Drug Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
40
45
.
43.
Kazerounian
,
K.
,
Latif
,
K.
,
Rodriguez
,
K.
, and
Alvarado
,
C.
,
2005
, “
Nano-Kinematics for Analysis of Protein Molecules: Analysis and Design of Protein Based Nanodevices
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
699
711
.
44.
Kazerounian
,
K.
,
Latif
,
K.
,
Rodriguez
,
K.
, and
Alvarado
,
C.
,
2004
, “
ProtoFold—Part I: Nanokinematics for Analysis of Protein Molecules
,”
ASME
Paper No. DETC2004-57243.
45.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
,
2004
, “
ProtoFold—Part II: A Successive Kineto-Static Compliance Method for Protein Conformation Prediction
,”
ASME
Paper No. DETC2004-57247.
46.
Kazerounian
,
K.
,
Latif
,
K.
, and
Alvarado
,
C.
,
2005
, “
Protofold: A Successive Kinetostatic Compliance Method for Protein Conformation Prediction
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
712
717
.
47.
Shahbazi
,
Z.
,
Ilieş
,
H. T.
, and
Kazerounian
,
K.
,
2010
, “
Hydrogen Bonds and Kinematic Mobility of Protein Molecules
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021009
.
48.
Shahbazi
,
Z.
,
Pimentel
,
T. A. P. F.
,
Ilieş
,
H.
,
Kazerounian
,
K.
, and
Burkhard
,
P.
,
2010
, “
A Kinematic Observation and Conjecture for Creating Stable Constructs of a Peptide Nanoparticle
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Springer
,
The Netherlands
, pp.
203
210
.
49.
Shahbazi
,
Z.
, and
Demirtaş
,
A.
,
2015
, “
Rigidity Analysis of Protein Molecules
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031009
.
50.
Shahbazi
,
Z.
,
2015
, “
Mechanical Model of Hydrogen Bonds in Protein Molecules
,”
Am. J. Mech. Eng.
,
3
(
2
), pp.
47
54
.
51.
Tavousi
,
P.
, and
Ilieş
,
H. T.
,
2016
, “
Synthesizing Functional Mechanisms From a Link Soup
,”
ASME J. Mech. Des.
, (submitted).
52.
Mashayak
,
S. Y.
, and
Tanner
,
D. E.
,
2011
, “
Comparing Solvent Models for Molecular Dynamics of Protein
,” University of Illinois at Urbana-Champaign, Champaign, IL.
53.
Jorgensen
,
W. L.
, and
Tirado-Rives
,
J.
,
2005
, “
Potential Energy Functions for Atomic-Level Simulations of Water and Organic and Biomolecular Systems
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
19
), pp.
6665
6670
.
54.
Wang
,
H.
,
Junghans
,
C.
, and
Kremer
,
K.
,
2009
, “
Comparative Atomistic and Coarse-Grained Study of Water: What Do We Lose by Coarse-Graining?
Eur. Phys. J. E: Soft Matter Biol. Phys.
,
28
(
2
), pp.
221
229
.
55.
Izvekov
,
S.
, and
Voth
,
G. A.
,
2005
, “
Multiscale Coarse Graining of Liquid-State Systems
,”
J. Chem. Phys.
,
123
(
13
), p.
134105
.
56.
Roux
,
B.
, and
Simonson
,
T.
,
1999
, “
Implicit Solvent Models
,”
Biophys. Chem.
,
78
(
1
), pp.
1
20
.
57.
Eisenberg
,
D.
, and
McLachlan
,
A.
,
1986
, “
Solvation Energy in Protein Folding and Binding
,”
Nature
,
319
(
6050
), pp.
199
203
.
58.
Richmond
,
T. J.
,
1984
, “
Solvent Accessible Surface Area and Excluded Volume in Proteins: Analytical Equations for Overlapping Spheres and Implications for the Hydrophobic Effect
,”
J. Mol. Biol.
,
178
(
1
), pp.
63
89
.
59.
Brooks
,
B. R.
,
Bruccoleri
,
R. E.
,
Olafson
,
B. D.
,
Swaminathan
,
S.
, and
Karplus
,
M.
,
2004
, “
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations
,”
J. Comput. Chem.
,
4
(
2
), pp.
187
217
.
60.
Wodak
,
S. J.
, and
Janin
,
J.
,
1980
, “
Analytical Approximation to the Accessible Surface Area of Proteins
,”
Proc. Natl. Acad. Sci.
,
77
(
4
), pp.
1736
1740
.
61.
Fraternali
,
F.
, and
van Gunsteren
,
W. F.
,
1996
, “
An Efficient Mean Solvation Force Model for Use in Molecular Dynamics Simulations of Proteins in Aqueous Solution
,”
J. Mol. Biol.
,
256
(
5
), pp.
939
948
.
62.
van Gunsteren
,
W. F.
,
Daura
,
X.
, and
Mark
,
A. E.
,
2002
, “
GROMOS Force Field
,”
Encyclopedia of Computational Chemistry
,
Wiley
,
New York
.
63.
Allison
,
J. R.
,
Boguslawski
,
K.
,
Fraternali
,
F.
, and
van Gunsteren
,
W. F.
,
2011
, “
A Refined, Efficient Mean Solvation Force Model That Includes the Interior Volume Contribution
,”
J. Phys. Chem. B
,
115
(
15
), pp.
4547
4557
.
64.
Weiner
,
S. J.
,
Kollman
,
P. A.
,
Case
,
D. A.
,
Singh
,
U. C.
,
Ghio
,
C.
,
Alagona
,
G.
,
Profeta
,
S.
, and
Weiner
,
P.
,
1984
, “
A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins
,”
J. Am. Chem. Soc.
,
106
(
3
), pp.
765
784
.
65.
Cornell
,
W.
,
Cieplak
,
P.
,
Bayly
,
C.
,
Gould
,
I.
,
Merz
,
K.
,
Ferguson
,
D.
,
Spellmeyer
,
D.
,
Fox
,
T.
,
Caldwell
,
J.
, and
Kollman
,
P.
,
1995
, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem. Soc.
,
117
(
19
), pp.
5179
5197
.
66.
Weiser
,
J.
,
Shenkin
,
P. S.
, and
Still
,
W. C.
,
1999
, “
Approximate Atomic Surfaces From Linear Combinations of Pairwise Overlaps (LCPO)
,”
J. Comput. Chem.
,
20
(
2
), pp.
217
230
.
67.
Tavousi
,
P.
,
Behandish
,
M.
,
Kazerounian
,
K.
, and
Ilies
,
H. T.
,
2013
, “
An Improved Free Energy Formulation and Implementation for Kinetostatic Protein Folding Simulation
,”
ASME
Paper No. DETC2013-12671.
68.
Behandish
,
M.
,
Tavousi
,
P.
,
Ilies
,
H. T.
, and
Kazerounian
,
K.
,
2013
, “
GPU-Accelerated Parallel Computation of Free Energy for Kinetostatic Protein Folding Simulation
,”
ASME
Paper No. DETC2013-12675.
69.
Cole
,
R.
, and
Vishkin
,
U.
,
1989
, “
Faster Optimal Parallel Prefix Sums and List Ranking
,”
Inf. Comput.
,
81
(
3
), pp.
334
352
.
70.
Gupta
,
K. C.
,
1986
, “
Kinematic Analysis of Manipulators Using the Zero Reference Position Description
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
5
13
.
71.
Subramanian
,
R.
, and
Kazerounian
,
K.
,
2007
, “
Improved Molecular Model of a Peptide Unit for Proteins
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1130
1136
.
72.
Bajaj
,
C.
, and
Zhao
,
W.
,
2010
, “
Fast Molecular Solvation Energetics and Forces Computation
,”
SIAM J. Sci. Comput.
,
31
(
6
), pp.
4524
4552
.
73.
Fogolari
,
F.
,
Brigo
,
A.
, and
Molinari
,
H.
,
2002
, “
The Poisson–Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology
,”
J. Mol. Recognit.
,
15
(
6
), pp.
377
392
.
74.
Still
,
W. C.
,
Tempczyk
,
A.
,
Hawley
,
R. C.
, and
Hendrickson
,
T.
,
1990
, “
Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics
,”
J. Am. Chem. Soc.
,
112
(
16
), pp.
6127
6129
.
75.
Onufriev
,
A.
,
Case
,
D.
, and
Bashford
,
D.
,
2002
, “
Effective Born Radii in the Generalized Born Approximation: The Importance of Being Perfect
,”
J. Comput. Chem.
,
23
(
14
), pp.
1297
1304
.
76.
Rappe
,
A.
, and
Casewit
,
C.
,
1997
,
Molecular Mechanics Across Chemistry
,
University Science Books
,
Herndon, VA
.
77.
Wesson
,
L.
, and
Eisenberg
,
D.
,
1992
, “
Atomic Solvation Parameters Applied to Molecular Dynamics of Proteins in Solution
,”
Protein Sci.
,
1
(
2
), pp.
227
235
.
78.
Lee
,
B.
, and
Richards
,
F.
,
1971
, “
The Interpretation of Protein Structures: Estimation of Static Accessibility
,”
J. Mol. Biol.
,
55
(
3
), pp.
379
400
.
79.
Wolfenden
,
R.
,
Andersson
,
L.
,
Cullis
,
P. M.
, and
Southgate
,
C. C. B.
,
1981
, “
Affinities of Amino Acid Side Chains for Solvent Water
,”
Biochemistry
,
20
(
4
), pp.
849
855
.
80.
Kyte
,
J.
, and
Doolittle
,
R. F.
,
1982
, “
A Simple Method for Displaying the Hydropathic Character of a Protein
,”
J. Mol. Biol.
,
157
(
1
), pp.
105
132
.
81.
Sharp
,
K. A.
,
Nicholls
,
A.
,
Friedman
,
R.
, and
Honig
,
B.
,
1991
, “
Extracting Hydrophobic Free Energies From Experimental Data: Relationship to Protein Folding and Theoretical Models
,”
Biochemistry
,
30
(
40
), pp.
9686
9697
.
82.
Muller
,
M. E.
,
1959
, “
A Note on a Method for Generating Points Uniformly on n-Dimensional Spheres
,”
Commun. ACM
,
2
(
4
), pp.
19
20
.
83.
Yershova
,
A.
, and
LaValle
,
S. M.
,
2004
, “
Deterministic Sampling Methods for Spheres and SO(3)
,”
2004 IEEE International Conference on Robotics and Automation
(
ICRA 2004
), Apr. 26–May 1, Vol.
4
, pp.
3974
3980
.
84.
Maggs
,
B. M.
,
Matheson
,
L. R.
, and
Tarjan
,
R. E.
,
1995
, “
Models of Parallel Computation: A Survey and Synthesis
,”
28th Hawaii International Conference on System Sciences
, Wailea, HI, June 3–6, Vol.
2
, pp.
61
70
.
85.
Lins
,
R. D.
, and
Ferreira
,
R.
,
2006
, “
The Stability of Right- and Left-Handed Alpha-Helices as a Function of Monomer Chirality
,”
Quím. Nova
,
29
(
5
), pp.
997
998
.
86.
Davis
,
I. W.
,
Leaver-Fay
,
A.
,
Chen
,
V. B.
,
Block
,
J. N.
,
Kapral
,
G. J.
,
Wang
,
X.
,
Murray
,
L. W.
,
Arendall
,
W. B.
,
Snoeyink
,
J.
,
Richardson
,
J. S.
, and
Richardson
,
D. C.
,
2007
, “
MolProbity: All-Atom Contacts and Structure Validation for Proteins and Nucleic Acids
,”
Nucleic Acids Res.
,
35
, pp.
W375
W383
.
87.
Chen
,
V. B.
,
Arendall
,
W. B.
,
Headd
,
J. J.
,
Keedy
,
D. A.
,
Immormino
,
R. M.
,
Kapral
,
G. J.
,
Murray
,
L. W.
,
Richardson
,
J. S.
, and
Richardson
,
D. C.
,
2009
, “
MolProbity: All-Atom Structure Validation for Macromolecular Crystallography
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
,
66
(
1
), pp.
12
21
.
88.
Petsko
,
G. A.
, and
Ringe
,
D.
,
2004
,
Protein Structure and Function
,
Sinauer Associates
,
Sunderland, MA
.
89.
Eilers
,
M.
,
Patel
,
A. B.
,
Liu
,
W.
, and
Smith
,
S. O.
,
2002
, “
Comparison of Helix Interactions in Membrane and Soluble α-Bundle Proteins
,”
Biophys. J.
,
82
(
5
), pp.
2720
2736
.
You do not currently have access to this content.