In this work, data from two-dimensional (2D) images of the human retina were taken as a case study. First, the characteristic data points had been removed using the Douglas–Peucker (DP) method, and subsequently, more data points were added using random fractal interpolation approach, to reconstruct a three-dimensional (3D) model of the blood vessel. By visualizing the result, we can see that all the small blood vessels in the human retina are more visible and detailed. This algorithm of 3D reconstruction has the advantage of being fast with calculation time less than 40 s and also can reduce the 3D image storage level on a disk with a reduction ratio between 78% and 96.65%.

References

References
1.
Zeng
,
J.
,
Zhang
,
Y.
, and
Zhan
,
S.
,
2006
, “
3D Tree Models Reconstruction From a Single Image
,” ISDA’06, pp.
445
450
.
2.
Sturm
,
P.
, and
Maybank
,
S. J.
,
1999
, “
A Method for Interactive 3D Reconstruction of Piecewise Planar Objects From Single Images
,” BMVC, pp.
265
274
.
3.
Colombo
,
C.
,
Del Bimbo
,
A.
, and
Pernici
,
F.
,
2005
, “
Metric 3D Reconstruction and Texture Acquisition of Surfaces of Revolution From a Single Uncalibrated View
,”
Pattern Anal. Mach. Intell.
,
27
(
1
), pp.
99
114
.
4.
Horry
,
Y.
,
Aniyo
,
K.
, and
Arai
,
K.
,
1997
, “
Tour Into the Picture: Using a Spidery Mesh Interface to Make Animation From a Single Image
,” ACM SIGGRAPH, pp.
225
232
.
5.
Zhang
,
L.
,
Dugas-Phocion
,
G.
,
Samson
,
J. S.
, and
Seitz
,
S. M.
,
2001
, “
Single View Modeling of Free-Form Scenes
,” Computer Vision and Pattern Recognition (CVPR), pp.
990
997
.
6.
Barnsley
,
M. F.
, and
Harrington
,
A. N.
,
1989
, “
The Calculus of Fractal Interpolation Functions
,”
J. Approximation Theory
,
57
(
1
), pp.
14
34
.
7.
Mandelbrot
,
B. B.
,
1977
,
Fractals: Form, Chance and Dimension
,
W.H. Freeman
,
San Francisco, CA
.
8.
Barnsley
,
M. F.
,
1988
,
Fractals Everywhere
,
Academic Press
,
Boston, MA
.
9.
Barnsley
,
M. F.
,
1986
, “
Fractal Functions and Interpolations
,”
Constr. Approximation
,
2
(
1
), pp.
303
329
.
10.
STARE (Structured Analysis of the Retina) project website, http://www.ces.clemson.edu/∼ahoover/stare
11.
Gegúndez-Arias
,
M. E.
,
Aquino
,
A.
,
Bravo
,
J. M.
, and
Marín
,
D.
,
2012
, “
A Function for Quality Evaluation of Retinal Vessel Segmentations
,”
IEEE Trans. Med. Imaging
,
31
(
2
), pp.
231
239
.
12.
Hoover
,
A.
,
Kouznetsova
,
V.
, and
Goldbaum
,
M.
,
2000
, “
Locating Blood Vessels in Retinal Images by Piecewise Threshold Probing of a Matched Filter Response
,”
IEEE Trans. Med. Imaging
,
19
(
3
), pp.
931
935
.
13.
Zhang
,
E.
,
Zhang
,
Y.
, and
Zhang
,
T.
,
2002
, “
Automatic Retinal Image Registration Based on Blood Vessel Feature Point
,”
First International Conference on Machine Learning and Cybernetics
, Vol.
4
, pp.
2010
2015
.
14.
El Abbadi
,
N. K.
, and
El Saadi
,
E. H.
,
2013
, “
Automatic Detection of Vascular Bifurcations and Crossovers in Retinal Fundus Image
,”
IJCSI Int. J. Comput. Sci. Issues
,
10
(
6
), pp.
162
166
.
15.
Shahzad
,
R.
,
Li
,
H. K.
,
Metz
,
C.
,
Tang
,
H.
,
Schaap
,
M.
,
van Vliet
,
L.
,
Niessen
,
W.
, and
van Walsum
,
T.
,
2013
, “
Automatic Segmentation, Detection and Quantification of Coronary Artery Stenoses on CTA
,”
Int. J. Cardiovasc. Imaging
,
29
(
8
), pp.
1847
1859
.
16.
White
,
E. R.
,
1985
, “
Assessment of Line-Generalization Algorithms Using Characteristic Point
,”
Am. Cartographer
,
12
(
1
), pp.
17
27
.
17.
Marino
,
J. S.
,
1979
, “
Identification of Characteristic Points Along Naturally Occurring Lines
,”
Cartographic A: Int. J. Geogr. Inf. Geovisualization
,
16
(
1
), pp.
70
80
.
18.
Spiegel
,
M.
,
Redel
,
T.
,
Struffert
,
T.
,
Hornegger
,
J.
, and
Doerfler
,
A.
,
2011
, “
A 2D Driven 3D Vessel Segmentation Algorithm for 3D Digital Subtraction Angiography Data
,”
Phys. Med. Biol.
,
56
(
19
), pp.
6401
6419
.
19.
Bourke
,
P. D.
, and
Felinto
,
D. Q.
,
2010
, “
Blender and Immersive Gaming in a Hemispherical Dome
,”
Computer Games & Allied Technology 10 (CGAT10)
, Vol.
1
, pp.
280
284
.
20.
Sun
,
H.
,
2012
, “
A Practical MATLAB Program for Multifractal Interpolation Surface
,”
8th International Conference on Natural Computation (ICNC)
, pp.
909
913
.
21.
Sun
,
H.
,
2012
, “
The Theory of Fractal Interpolated Surface and Its MATLAB Program
,”
IEEE Symposium on Electrical & Electronics Engineering (EEESYM)
, pp.
231
234
.
22.
Chen
,
Y. Q.
, and
Bi
,
G.
,
1997
, “
3-D IFS Fractals as Real-Time Graphics Model
,”
Comput. Graphics
,
21
(
3
), pp.
367
370
.
23.
Sun
,
H.
,
2012
, “
The Theory of Fractal Interpolated Surface and Its MATLAB Program
,”
IEEE
Symposium on Electrical and Electronics Engineering (EEESYM), pp.
231
234
.
24.
Chen
,
Y. Q.
, and
Bi
,
G.
,
1997
, “
3-D IFS Fractals as Real-time Graphics Model
,”
Computers & Graphics
,
21
(
3
), pp.
367
370
.
25.
Guérin
,
E.
,
Tosan
,
E.
, and
Baskurt
,
A.
,
2001
, “
Fractal Approximation of Surfaces Based on Projected IFS Attractors
,”
The Eurographics Association
,
9
(
1
), pp.
95
103
.
26.
Chen
,
C.
,
Lee
,
T.
,
Huang
,
Y. M.
, and
Lai
,
F.
,
2009
, “
Extraction of Characteristic Points and Its Fractal Reconstruction for Terrain Profile Data
,”
Chaos, Solitons Fractals
,
39
(
4
), pp.
1732
1743
.
You do not currently have access to this content.