The aim of this study is to analyze the origin of multifractality of surface electromyography (sEMG) signals during dynamic contraction in nonfatigue and fatigue conditions. sEMG signals are recorded from triceps brachii muscles of 22 healthy subjects. The signals are divided into six equal segments on time scale for normalization. The first and sixth segments are considered as the nonfatigue and fatigue conditions, respectively. The source of multifractality can be due to correlation and probability distribution. The original sEMG series are transformed into shuffled and surrogate series. These three series namely, original, shuffled, and surrogate series in the nonfatigue and fatigue conditions are subjected to multifractal detrended fluctuation analysis (MFDFA) and features are extracted. The results indicate that sEMG signals exhibit multifractal behavior. Further investigation revealed that origin of multifractality is primarily due to correlation. The origin of multifractality due to correlation is quantified as 80% in nonfatigue and 86% in fatigue conditions. This method of multifractal analysis may be useful for analyzing the progressive changes in muscle contraction in varied neuromuscular studies.

References

References
1.
Merletti
,
R.
, and
Parker
,
P. A.
,
2004
,
Electromyography: Physiology, Engineering, and Non-Invasive Applications
,
Wiley
,
Hoboken, NJ
.
2.
Schiaffino
,
S.
, and
Reggiani
,
C.
,
2011
, “
Fiber Types in Mammalian Skeletal Muscles
,”
Physiol. Rev.
,
91
(
4
), pp.
1447
1531
.
3.
Enoka
,
R. M.
, and
Stuart
,
D. G.
,
1992
, “
Neurobiology of Muscle Fatigue
,”
J. Appl. Physiol.
,
72
(
5
), pp.
1631
1648
.
4.
Venugopal
,
G.
,
Navaneethakrishna
,
M.
, and
Ramakrishnan
,
S.
,
2014
, “
Extraction and Analysis of Multiple Time Window Features Associated With Muscle Fatigue Conditions Using sEMG Signals
,”
Expert Syst. Appl.
,
41
(
6
), pp.
2652
2659
.
5.
Soo
,
Y.
,
Sugi
,
M.
,
Nishino
,
M.
,
Yokoi
,
H.
,
Arai
,
T.
,
Kato
,
R.
,
Nakamura
,
T.
, and
Ota
,
J.
,
2009
, “
Quantitative Estimation of Muscle Fatigue Using Surface Electromyography During Static Muscle Contraction
,” 31st
IEEE
Engineering in Medicine and Biology Society Conference
, Minneapolis, MN, Sept. 3–6, Vol. 1, pp.
2975
2978
.
6.
Hug
,
F.
,
2011
, “
Can Muscle Coordination be Precisely Studied by Surface Electromyography?
J. Electromyography Kinesiology
,
21
(
1
), pp.
1
12
.
7.
Merletti
,
R.
, and
Farina
,
D.
,
2008
, “
Surface EMG Processing: Introduction to the Special Issue
,”
Biomed. Sig. Process. Control
,
3
(
2
), pp.
115
117
.
8.
Zhang
,
Z. G.
,
Liu
,
H. T.
,
Chan
,
S. C.
,
Luk
,
K. D. K.
, and
Hu
,
Y.
,
2010
, “
Time-Dependent Power Spectral Density Estimation of Surface Electromyography During Isometric Muscle Contraction: Methods and Comparisons
,”
J. Electromyography Kinesiology
,
20
(
1
), pp.
89
101
.
9.
Meigal
,
A. Y.
,
Rissanen
,
S. M.
,
Tarvainen
,
M. P.
,
Airaksinen
,
O.
,
Kankaanpää
,
M.
, and
Karjalainen
,
P. A.
,
2013
, “
Non-Linear EMG Parameters for Differential and Early Diagnostics of Parkinson’s Disease
,”
Front. Neurol.
,
4
,
p
. 135.
10.
Talebinejad
,
M.
,
Chan
,
A. D. C.
,
Miri
,
A.
, and
Dansereau
,
R. M.
,
2009
, “
Fractal Analysis of Surface Electromyography Signals: A Novel Power Spectrum-Based Method
,”
J. Electromyography Kinesiology
,
19
(
5
), pp.
840
850
.
11.
Chen
,
X.
,
Liu
,
A.
,
Peng
,
H.
, and
Ward
,
R. K.
,
2014
, “
A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG
,”
Sensors
,
14
(
10
), pp.
18370
18389
.
12.
Inbar
,
G. F.
,
Paiss
,
O.
,
Allin
,
J.
, and
Kranz
,
H.
,
1986
, “
Monitoring Surface EMG Spectral Changes by the Zero Crossing Rate
,”
Med. Biol. Eng. Comput.
,
24
(
1
), pp.
10
18
.
13.
Bilodeau
,
M.
,
Cincera
,
M.
,
Arsenault
,
A. B.
, and
Gravel
,
D.
,
1997
, “
Normality and Stationarity of EMG Signals of Elbow Flexor Muscles During Ramp and Step Isometric Contractions
,”
J. Electromyography Kinesiology
,
7
(
2
), pp.
87
96
.
14.
Thongpanja
,
S.
,
Phinyomark
,
A.
,
Quaine
,
F.
,
Laurillau
,
Y.
,
Wongkittisuksa
,
B.
,
Limsakul
,
C.
, and
Phukpattaranont
,
P.
,
2013
, “
Effects of Window Size and Contraction Types on the Stationarity of Biceps Brachii Muscle EMG Signals
,”
7th International Convention on Rehabilitation Engineering and Assistive Technology
, pp.
44:1
44:4
.
15.
Venugopal
,
G.
, and
Ramakrishnan
,
S.
,
2014
, “
Analysis of Progressive Changes Associated With Muscle Fatigue in Dynamic Contraction of Biceps Brachii Muscle Using Surface EMG Signals and Bispectrum Features
,”
Biomed. Eng. Lett.
,
4
(
3
), pp.
269
276
.
16.
González-Izal
,
M.
,
Malanda
,
A.
,
Gorostiaga
,
E.
, and
Izquierdo
,
M.
,
2012
, “
Electromyographic Models to Assess Muscle Fatigue
,”
J. Electromyography Kinesiology
,
22
(
4
), pp.
501
512
.
17.
Gonzalez-Izal
,
M.
,
Cadore
,
E. L.
, and
Izquierdo
,
M.
,
2014
, “
Muscle Conduction Velocity, Surface Electromyography Variables, and Echo Intensity During Concentric and Eccentric Fatigue
,”
Muscle Nerve
,
49
(
3
), pp.
389
397
.
18.
Marri
,
K.
, and
Swaminathan
,
R.
,
2015
, “
Multifractal Analysis of sEMG Signalsfor Fatigue Assessment in Dynamic Contractions Using Hurst Exponents
,”
2015 41th Annual Northeast Bioengineering Conference
(
NEBEC
), Troy, NY, Apr. 17–19, pp.
1
2
.
19.
Kulkarni
,
S.
, and
Swaminathan
,
R.
,
2015
, “
Analysis of Surface EMG Signals During Dynamic Contraction Using Lempel–Ziv Complexity
,”
2015 41st Annual Northeast Biomedical Engineering Conference
(
NEBEC
), pp.
1
2
.
20.
Talebinejad
,
M.
,
Chan
,
A. D. C.
, and
Miri
,
A.
,
2011
, “
A Lempel–Ziv Complexity Measure for Muscle Fatigue Estimation
,”
J. Electromyography Kinesiology
,
21
(
2
), pp.
236
241
.
21.
Ihlen
,
E. A.
,
2012
, “
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
,”
Front. Physiol.
,
3
,
p
. 141.
22.
Halsey
,
T.
,
Jensen
,
M.
,
Kadanoff
,
L.
,
Procaccia
,
I.
, and
Shraiman
,
B.
,
1986
, “
Fractal Measures and Their Singularities: The Characterization of Strange Sets
,”
Phys. Rev. A
,
33
(
2
), pp.
1141
1151
.
23.
Mandelbrot
,
B. B.
,
1983
,
The Fractal Geometry of Nature
,
W. H. Freeman
,
New York
.
24.
Ihlen
,
E. A.
, and
Vereijken
,
B.
,
2013
, “
Multifractal Formalisms of Human Behavior
,”
Hum. Mov. Sci.
,
32
(
4
), pp.
633
651
.
25.
Mandelbrot
,
B. B.
,
1985
, “
Self-Affine Fractals and Fractal Dimension
,”
Phys. Scr.
,
32
(
4
), pp.
257
260
.
26.
Zorick
,
T.
, and
Mandelkern
,
M. A.
,
2013
, “
Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison With the Wavelet Transform Modulus Maxima Technique
,”
PLoS ONE
,
8
(
7
), pp.
1
7
.
27.
Lewis
,
M. J.
,
Short
,
A. L.
, and
Suckling
,
J.
,
2012
, “
Multifractal Characterisation of Electrocardiographic RR and QT Time-Series Before and After Progressive Exercise
,”
Comput. Methods Programs Biomed.
,
108
(
1
), pp.
176
185
.
28.
Ivanov
,
P. C.
,
Amaral
,
L. A.
,
Goldberger
,
A. L.
,
Havlin
,
S.
,
Rosenblum
,
M. G.
,
Struzik
,
Z. R.
, and
Stanley
,
H. E.
,
1999
, “
Multifractality in Human Heartbeat Dynamics
,”
Nature
,
399
(
6735
), pp.
461
465
.
29.
Ihlen
,
E. A. F.
,
2012
, “
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
,”
Front. Physiol.
,
3
,
p
. 141.
30.
Gupta
,
V.
,
Suryanarayanan
,
S.
, and
Reddy
,
N. P.
,
1997
, “
Fractal Analysis of Surface EMG Signals From the Biceps
,”
Int. J. Med. Informatics
,
45
(
3
), pp.
185
192
.
31.
Marri
,
K.
,
Jose
,
J.
,
Karthick
,
P. A.
, and
Ramakrishnan
,
S.
,
2014
, “
Analysis of Fatigue Conditions in Triceps Brachii Muscle Using sEMG Signals and Spectral Correlation Density Function
,”
International Conference on Informatics, Electronics and Vision
(
ICIEV
), Dhaka, May 23–24, pp.
1
4
.
32.
Arjunan
,
S. P.
, and
Kumar
,
D. K.
,
2007
, “
Fractal Theory Based Non-Linear Analysis of sEMG
,”
3rd International Conference on Intelligent Sensors, Sensor Networks and Information
, Melbourne, Australia, Dec. 3–6, pp.
545
548
.
33.
Green
,
E.
,
Hanan
,
W.
, and
Heffernan
,
D.
,
2014
, “
The Origins of Multifractality in Financial Time Series and the Effect of Extreme Events
,”
Eur. Phys. J. B
,
87
(
6
), pp.
1
9
.
34.
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
,
2002
, “
Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,”
Physica A
,
316
(1–4), pp.
87
114
.
35.
Wang
,
G.
,
Ren
,
X.
,
Li
,
L.
, and
Wang
,
Z.
,
2007
, “
Multifractal Analysis of Surface EMG Signals for Assessing Muscle Fatigue During Static Contractions
,”
J. Zhejiang Univ. Sci. A
,
8
(
6
), pp.
910
915
.
36.
Arjunan
,
S. P.
, and
Kumar
,
D. K.
,
2010
, “
Decoding Subtle Forearm Flexions Using Fractal Features of Surface Electromyogram From Single and Multiple Sensors
,”
J. Neuroeng. Rehab.
,
7
(
1
), p.
53
.
37.
Marri
,
K.
, and
Swaminathan
,
R.
,
2016
, “
Analysis of Biceps Brachii Muscles in Dynamic Contraction Using sEMG Signals and Multifractal DMA Algorithm
,”
Int. J. Sig. Process. Syst.
,
4
(
1
), pp.
79
85
.
38.
Marri
,
K.
, and
Swaminathan
,
R.
,
2015
, “
Identification of Onset of Fatigue in Biceps Brachii Muscles Using Surface EMG and Multifractal DMA Alogrithm
,”
Biomed. Sci. Instrum.
,
51
, pp.
107
114
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25996706
39.
Stegeman
,
D.
, and
Hermens
,
H.
,
2007
, “
Standards for Surface Electromyography
,”
The European Project Surface EMG for Non-Invasive Assessment of Muscles (SENIAM)
, pp.
108
112
.
40.
Rogers
,
D. R.
, and
MacIsaac
,
D. T.
,
2013
, “
A Comparison of EMG-Based Muscle Fatigue Assessments During Dynamic Contractions
,”
J. Electromyography Kinesiology
,
23
(
5
), pp.
1004
1011
.
41.
Lewis
,
M. J.
, and
McNarry
,
M. A.
,
2013
, “
Influence of Age and Aerobic Fitness on the Multifractal Characteristics of Electrocardiographic RR Time-Series
,”
Front. Physiol.
,
4
, pp.
1
13
.
42.
Guo
,
Y.
,
Huang
,
J.
, and
Cheng
,
H.
,
2012
, “
Multifractal Features of Metal Futures Market Based On Multifractal Detrended Cross‐Correlation Analysis
,”
Kybernetes
,
41
(
10
), pp.
1509
1525
.
43.
Lucio
,
J. H.
,
Valdés
,
R.
, and
Rodríguez
,
L. R.
,
2012
, “
Improvements to Surrogate Data Methods for Nonstationary Time Series
,”
Phys. Rev. E
,
85
(
5
), p.
056202
.
44.
Min
,
L. I. N.
, and
Shuang-xi
,
Y. A. N.
,
2013
, “
Multifractal Detrended Fluctuation Analysis of Interevent Time Series in a Modified OFC Model
,”
Commun. Theor. Phys.
,
59
(
1
), pp.
1
6
.
45.
Kimiagar
,
S.
,
Sadegh Movahed
,
M.
,
Khorram
,
S.
,
Sobhanian
,
S.
, and
Reza Rahimi Tabar
,
M.
,
2009
, “
Fractal Analysis of Discharge Current Fluctuations
,”
J. Stat. Mech.
,
2009
(
3
), p.
P03020
.
46.
Kugiumtzis
,
D.
,
2000
, “
Surrogate Data Test for Nonlinearity Including Nonmonotonic Transforms
,”
Phys. Rev. E
,
62
(
1 Pt A
), pp.
R25
R28
.
47.
Pérez Velázquez
,
J. L.
, and
Galán
,
R. F.
,
2013
, “
Information Gain in the Brain’s Resting State: A New Perspective on Autism
,”
Front. Neuroinf.
,
7
, p.
37
.
48.
Mali
,
P.
,
2014
, “
Fluctuation of Gold Price in India Versus Global Consumer Price Index
,”
Fractals
,
22
(
1–2
), p.
1450004
.
49.
Pavón-Domínguez
,
P.
,
Serrano
,
S.
,
Jiménez-Hornero
,
F. J.
,
Jiménez-Hornero
,
J. E.
,
Gutiérrez de Ravé
,
E.
, and
Ariza-Villaverde
,
A. B.
,
2013
, “
Multifractal Detrended Fluctuation Analysis of Sheep Livestock Prices in Origin
,”
Physica A
,
392
(
19
), pp.
4466
4476
.
50.
Dutta
,
S.
,
Ghosh
,
D.
, and
Chatterjee
,
S.
,
2013
, “
Multifractal Detrended Fluctuation Analysis of Human Gait Diseases
,”
Front. Physiol.
,
4
, p.
274
.
51.
Vidal Vázquez
,
E.
,
Miranda
,
J. G. V.
, and
Paz-Ferreiro
,
J.
,
2010
, “
A Multifractal Approach to Characterize Cumulative Rainfall and Tillage Effects on Soil Surface Micro-Topography and to Predict Depression Storage
,”
Biogeosciences
,
7
(
10
), pp.
2989
3004
.
52.
Eguiraun
,
H.
,
Lopez-de-ipina
,
K.
, and
Martinez
,
I.
,
2014
, “
Pattern Recognition of Fish Responses Using Fractal Dimension and Entropy Analysis
,”
Trans. Pattern Anal. Mach. Intell.
,
16
(
11
), pp.
6133
6151
.
53.
Dimitrova
,
N. A.
, and
Dimitrov
,
G. V.
,
2003
, “
Interpretation of EMG Changes With Fatigue: Facts, Pitfalls, and Fallacies
,”
J. Electromyography Kinesiology
,
13
(
1
), pp.
13
36
.
54.
Merletti
,
R.
, and
Farina
,
D.
,
2009
, “
Analysis of Intramuscular Electromyogram Signals
,”
Philos. Trans. Ser. A
,
367
(
1887
), pp.
357
368
.
You do not currently have access to this content.