Bioprinting is an emerging technology to fabricate artificial tissues and organs through additive manufacturing of living cells in a tissues-specific pattern by stacking them layer by layer. Two major approaches have been proposed in the literature: bioprinting cells in a scaffold matrix to support cell proliferation and growth, and bioprinting cells without using a scaffold structure. Despite great progress, particularly in scaffold-based approaches along with recent significant attempts, printing large-scale tissues and organs is still elusive. This paper demonstrates recent significant attempts in scaffold-based and scaffold-free tissue printing approaches, discusses the advantages and limitations of both approaches, and presents a conceptual framework for bioprinting of scale-up tissue by complementing the benefits of these approaches.

References

References
1.
Ozbolat
,
I. T.
, and
Yu
,
Y.
,
2013
, “
Bioprinting Towards Organ Fabrication: Challenges and Future Trends
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
691
699
.10.1109/TBME.2013.2243912
2.
Mironov
,
V.
,
Reis
,
N.
, and
Derby
,
B.
,
2006
, “
Bioprinting: A Beginning
,”
Tissue Eng.
,
12
(
4
), pp.
631
634
.10.1089/ten.2006.12.631
3.
Tasoglu
,
S.
, and
Demirci
,
U.
,
2013
, “
Bioprinting for Stem Cell Research
,”
Trends Biotechnol.
,
31
(
1
), pp.
10
19
.10.1016/j.tibtech.2012.10.005
4.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-Of-The-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
.10.1115/1.4028512
5.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.10.1038/nbt.2958
6.
Malda
,
J.
,
Visser
,
J.
,
Melchels
,
F. P.
,
Jüngst
,
T.
,
Hennink
,
W. E.
,
Dhert
,
W. J. A.
,
Groll
,
J.
, and
Hutmacher
,
D. W.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
.10.1002/adma.201302042
7.
Murphy
,
S. V.
,
Skardal
,
A.
, and
Atala
,
A.
,
2013
, “
Evaluation of Hydrogels for Bio-Printing Applications
,”
J. Biomed. Mater. Res. Part A
,
101A
(
1
), pp.
272
284
.10.1002/jbm.a.34326
8.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.10.1016/j.biomaterials.2009.06.034
9.
Jakab
,
K.
,
Norotte
,
C.
,
Marga
,
F.
,
Murphy
,
K.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2010
, “
Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells
,”
Biofabrication
,
2
(
2
), p.
022001
.10.1088/1758-5082/2/2/022001
10.
Zhao
,
Y.
,
Yao
,
R.
,
Ouyang
,
L.
,
Ding
,
H.
,
Zhang
,
T.
,
Zhang
,
K.
,
Cheng
,
S.
, and
Sun
,
W.
,
2014
, “
Three-Dimensional Printing of Hela Cells for Cervical Tumor Model In Vitro
,”
Biofabrication
,
6
(
3
), p.
035001
.10.1088/1758-5082/6/3/035001
11.
Ozbolat
,
I. T.
,
Chen
,
H.
, and
Yu
,
Y.
,
2014
, “
Development of ‘Multi-Arm Bioprinter’ for Hybrid Biofabrication of Tissue Engineering Constructs
,”
Rob. Comput. Integr. Manuf.
,
30
(
3
), pp.
295
304
.10.1016/j.rcim.2013.10.005
12.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotechnol. J.
,
1
(
9
), pp.
910
917
.10.1002/biot.200600081
13.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-On-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
.10.1021/la501430x
14.
Guillemot
,
F.
,
Souquet
,
A.
,
Catros
,
S.
, and
Guillotin
,
B.
,
2010
, “
Laser-Assisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering
,”
Nanomedicine
,
5
(
3
), pp.
507
515
.10.2217/nnm.10.14
15.
Guillemot
,
F.
,
Guillotin
,
B.
,
Fontaine
,
A.
,
Ali
,
M.
,
Catros
,
S.
,
Kériquel
,
V.
,
Fricain
,
J.-C.
,
Rémy
,
M.
,
Bareille
,
R.
, and
Amédée-Vilamitjana
,
J.
,
2011
, “
Laser-Assisted Bioprinting to Deal With Tissue Complexity in Regenerative Medicine
,”
MRS Bull.
,
36
(
12
), pp.
1015
1019
.10.1557/mrs.2011.272
16.
Park
,
J.-H.
,
Pérez
,
R. A.
,
Jin
,
G.-Z.
,
Choi
,
S.-J.
,
Kim
,
H.-W.
, and
Wall
,
I. B.
,
2012
, “
Microcarriers Designed for Cell Culture and Tissue Engineering of Bone
,”
Tissue Eng. Part B
,
19
(
2
), pp.
172
190
.10.1089/ten.teb.2012.0432
17.
Levato
,
R.
,
Visser
,
J.
,
Planell
,
J. A.
,
Engel
,
E.
,
Malda
,
J.
, and
Mateos-Timoneda
,
M. A.
,
2014
, “
Biofabrication of Tissue Constructs by 3D Bioprinting of Cell-Laden Microcarriers
,”
Biofabrication
,
6
(
3
), p.
035020
.10.1088/1758-5082/6/3/035020
18.
Ott
,
H.
,
Matthiesen
,
T.
,
Goh
,
S.-K.
,
Black
,
L.
,
Kren
,
S.
,
Netoff
,
T.
, and
Taylor
,
D.
,
2008
, “
Perfusion-Decellularized Matrix: Using Nature's Platform to Engineer a Bioartificial Heart
,”
Nat. Med.
,
14
, pp.
213
221
.10.1038/nm1684
19.
Pati
,
F.
,
Jang
,
J.
,
Ha
,
D.-H.
,
Kim
,
S. W.
,
Rhie
,
J.-W.
,
Shim
,
J.-H.
,
Kim
,
D.-H.
, and
Cho
,
D.-W.
,
2014
, “
Printing Three-Dimensional Tissue Analogues With Decellularized Extracellular Matrix Bioink
,”
Nat. Commun.
,
5
, p.
3935
.10.1038/ncomms4935
20.
Achilli
,
T.-M.
,
Meyer
,
J.
, and
Morgan
,
J. R.
,
2012
, “
Advances in the Formation, Use and Understanding of Multi-Cellular Spheroids
,”
Exp. Opin. Biol. Ther.
,
12
(
10
), pp.
1347
1360
.10.1517/14712598.2012.707181
21.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
C. L.
,
Kachurin
,
A.
,
Church
,
K. H.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures
,”
Tissue Eng. Part A
,
14
(
3
), pp.
413
421
.10.1089/tea.2007.0173
22.
Owens
,
C. M.
,
Marga
,
F.
,
Forgacs
,
G.
, and
Heesch
,
C. M.
,
2013
, “
Biofabrication and Testing of a Fully Cellular Nerve Graft
,”
Biofabrication
,
5
(
4
), p.
045007
.10.1088/1758-5082/5/4/045007
23.
Lee
,
K.
,
Kim
,
C.
,
Young Yang
,
J.
,
Lee
,
H.
,
Ahn
,
B.
,
Xu
,
L.
,
Yoon Kang
,
J.
, and
Oh
,
K. W.
,
2012
, “
Gravity-Oriented Microfluidic Device for Uniform and Massive Cell Spheroid Formation
,”
Biomicrofluidics
,
6
(
1
), p.
014114
.10.1063/1.3687409
24.
Tung
,
Y.-C.
,
Hsiao
,
A. Y.
,
Allen
,
S. G.
,
Torisawa
,
Y.-S.
,
Ho
,
M.
, and
Takayama
,
S.
,
2011
, “
High-Throughput 3D Spheroid Culture and Drug Testing Using a 384 Hanging Drop Array
,”
Analyst
,
136
(
3
), pp.
473
478
.10.1039/C0AN00609B
25.
Estes
,
B.
, and
Guilak
,
F.
,
2011
, “
Three-Dimensional Culture Systems to Induce Chondrogenesis of Adipose-Derived Stem Cells
,”
Adipose-Derived Stem Cells
,
J. M.
Gimble
, and
B. A.
Bunnell
, eds.,
Humana Press
,
Springer, New York
, pp.
201
217
.10.1007/978-1-61737-960-4_15
26.
Bernard
,
A. B.
,
Lin
,
C.-C.
, and
Anseth
,
K. S.
,
2012
, “
A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells
,”
Tissue Eng., Part C
,
18
(
8
), pp.
583
592
.10.1089/ten.tec.2011.0504
27.
Kusamori
,
K.
,
Nishikawa
,
M.
,
Mizuno
,
N.
,
Nishikawa
,
T.
,
Masuzawa
,
A.
,
Shimizu
,
K.
,
Konishi
,
S.
,
Takahashi
,
Y.
, and
Takakura
,
Y.
,
2014
, “
Transplantation of Insulin-Secreting Multicellular Spheroids for the Treatment of Type 1 Diabetes in Mice
,”
J. Controlled Release
,
173
, pp.
119
124
.10.1016/j.jconrel.2013.10.024
28.
Fu
,
C.-Y.
,
Tseng
,
S.-Y.
,
Yang
,
S.-M.
,
Hsu
,
L.
,
Liu
,
C.-H.
, and
Chang
,
H.-Y.
,
2014
, “
A Microfluidic Chip With a U-Shaped Microstructure Array for Multicellular Spheroid Formation, Culturing and Analysis
,”
Biofabrication
,
6
(
1
), p.
015009
.10.1088/1758-5082/6/1/015009
29.
Yu
,
L.
,
Chen
,
M. C. W.
, and
Cheung
,
K. C.
,
2010
, “
Droplet-Based Microfluidic System for Multicellular Tumor Spheroid Formation and Anticancer Drug Testing
,”
Lab Chip
,
10
(
18
), pp.
2424
2432
.10.1039/c004590j
30.
Li
,
Q.
,
Chow
,
A. B.
, and
Mattingly
,
R. R.
,
2010
, “
Three-Dimensional Overlay Culture Models of Human Breast Cancer Reveal a Critical Sensitivity to Mitogen-Activated Protein Kinase Kinase Inhibitors
,”
J. Pharmacol. Exp. Ther.
,
332
(
3
), pp.
821
828
.10.1124/jpet.109.160390
31.
Rodday
,
B.
,
Hirschhaeuser
,
F.
,
Walenta
,
S.
, and
Mueller-Klieser
,
W.
,
2011
, “
Semiautomatic Growth Analysis of Multicellular Tumor Spheroids
,”
J. Biomol. Screening
,
16
(
9
), pp.
1119
1124
.10.1177/1087057111419501
32.
Barrila
,
J.
,
Radtke
,
A. L.
,
Crabbé
,
A.
,
Sarker
,
S. F.
,
Herbst-Kralovetz
,
M. M.
,
Ott
,
C. M.
, and
Nickerson
,
C. A.
,
2010
, “
Organotypic 3D Cell Culture Models: Using the Rotating Wall Vessel to Study Host–Pathogen Interactions
,”
Nat. Rev. Microbiol.
,
8
(
11
), pp.
791
801
.10.1038/nrmicro2423
33.
Yang
,
C. C.
, and
Burg
,
K. J. L.
,
2015
, “
Designing a Tunable 3D Heterocellular Breast Cancer Tissue Test System
,”
J. Tissue Eng. Regener. Med.
,
9
(3), pp.
310
314
.10.1002/term.1660
34.
Kucukgul
,
C.
,
Ozler
,
S. B.
,
Inci
,
I.
,
Karakas
,
E.
,
Irmak
,
S.
,
Gozuacik
,
D.
,
Taralp
,
A.
, and
Koc
,
B.
,
2014
, “
3D Bioprinting of Biomimetic Aortic Vascular Constructs With Self-Supporting Cells
,”
Biotechnol. Bioeng.
,
112
(
4
), pp.
811
821
.10.1002/bit.25493
35.
Gardan
,
N.
, and
Schneider
,
A.
,
2014
, “
Topological Optimization of Internal Patterns and Support in Additive Manufacturing
,”
J. Manuf. Syst.
(in press).
36.
Yu
,
Y.
,
Zhang
,
Y.
, and
Ozbolat
,
I. T.
,
2014
, “
A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061013
.10.1115/1.4028511
37.
So
,
K. F.
, and
Xu
,
X. M.
,
2015
,
Neural Regeneration
,
Elsevier Science
,
San Diego, CA
.
38.
Sekine
,
H.
,
Shimizu
,
T.
,
Sakaguchi
,
K.
,
Dobashi
,
I.
,
Wada
,
M.
,
Yamato
,
M.
,
Kobayashi
,
E.
,
Umezu
,
M.
, and
Okano
,
T.
,
2013
, “
In Vitro Fabrication of Functional Three-Dimensional Tissues With Perfusable Blood Vessels
,”
Nat. Commun.
,
4
, p.
1399
.10.1038/ncomms2406
39.
Takebe
,
T.
,
Sekine
,
K.
,
Enomura
,
M.
,
Koike
,
H.
,
Kimura
,
M.
,
Ogaeri
,
T.
,
Zhang
,
R.-R.
,
Ueno
,
Y.
,
Zheng
,
Y.-W.
, and
Koike
,
N.
,
2013
, “
Vascularized and Functional Human Liver From an IPSC-Derived Organ Bud Transplant
,”
Nature
,
499
(
7459
), pp.
481
484
.10.1038/nature12271
40.
Ehsan
,
S. M.
,
Welch-Reardon
,
K. M.
,
Waterman
,
M. L.
,
Hughes
,
C. C. W.
, and
George
,
S. C.
,
2014
, “
A Three-Dimensional In Vitro Model of Tumor Cell Intravasation
,”
Integr. Biol.
,
6
(
6
), pp.
603
610
.10.1039/c3ib40170g
You do not currently have access to this content.