Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

References

References
1.
Moon
,
S.
,
Gurkan
,
U. A.
,
Blander
,
J.
,
Fawzi
,
W. W.
,
Aboud
,
S.
,
Mugusi
,
F.
,
Kuritzkes
,
D. R.
, and
Demirci
,
U.
,
2011
, “
Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients
,”
PLoS One
,
6
(
7
), p.
e21409
.
2.
Wang
,
S.
,
Tasoglu
,
S.
,
Chen
,
P. Z.
,
Chen
,
M.
,
Akbas
,
R.
,
Wach
,
S.
,
Ozdemir
,
C. I.
,
Gurkan
,
U. A.
,
Giguel
,
F. F.
,
Kuritzkes
,
D. R.
, and
Demirci
,
U.
,
2014
, “
Micro-a-Fluidics ELISA for Rapid CD4 Cell Count at the Point-of-Care
,”
Sci. Rep.
,
4
, p.
3796
.
3.
Stott
,
S. L.
,
Hsu
,
C. H.
,
Tsukrov
,
D. I.
,
Yu
,
M.
,
Miyamoto
,
D. T.
,
Waltman
,
B. A.
,
Rothenberg
,
S. M.
,
Shah
,
A. M.
,
Smas
,
M. E.
,
Korir
,
G. K.
,
Floyd
,
F. P.
, Jr.
,
Gilman
,
A. J.
,
Lord
,
J. B.
,
Winokur
,
D.
,
Springer
,
S.
,
Irimia
,
D.
,
Nagrath
,
S.
,
Sequist
,
L. V.
,
Lee
,
R. J.
,
Isselbacher
,
K. J.
,
Maheswaran
,
S.
,
Haber
,
D. A.
, and
Toner
,
M.
,
2010
, “
Isolation of Circulating Tumor Cells Using a Microvortex-Generating Herringbone-Chip
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
43
), pp.
18392
18397
.
4.
Alapan
,
Y.
,
Little
,
J. A.
, and
Gurkan
,
U. A.
,
2014
, “
Heterogeneous Red Blood Cell Adhesion and Deformability in Sickle Cell Disease
,”
Sci. Rep.
,
4
, p.
7173
.
5.
Kotz
,
K. T.
,
Xiao
,
W.
,
Miller-Graziano
,
C.
,
Qian
,
W. J.
,
Russom
,
A.
,
Warner
,
E. A.
,
Moldawer
,
L. L.
,
De
,
A.
,
Bankey
,
P. E.
,
Petritis
,
B. O.
,
Camp
,
D. G.
, II
,
Rosenbach
,
A. E.
,
Goverman
,
J.
,
Fagan
,
S. P.
,
Brownstein
,
B. H.
,
Irimia
,
D.
,
Xu
,
W.
,
Wilhelmy
,
J.
,
Mindrinos
,
M. N.
,
Smith
,
R. D.
,
Davis
,
R. W.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2010
, “
Clinical Microfluidics for Neutrophil Genomics and Proteomics
,”
Nat. Med.
,
16
(
9
), pp.
1042
1047
.
6.
Gurkan
,
U. A.
,
Tasoglu
,
S.
,
Akkaynak
,
D.
,
Avci
,
O.
,
Unluisler
,
S.
,
Canikyan
,
S.
,
MacCallum
,
N.
, and
Demirci
,
U.
,
2012
, “
Smart Interface Materials Integrated With Microfluidics for On-Demand Local Capture and Release of Cells
,”
Adv. Healthcare Mater.
,
1
(
5
), pp.
661
668
.
7.
Gurkan
,
U. A.
,
Anand
,
T.
,
Tas
,
H.
,
Elkan
,
D.
,
Akay
,
A.
,
Keles
,
H. O.
, and
Demirci
,
U.
,
2011
, “
Controlled Viable Release of Selectively Captured Label-Free Cells in Microchannels
,”
Lab Chip
,
11
(
23
), pp.
3979
3989
.
8.
Vickers
,
D. A.
,
Chory
,
E. J.
, and
Murthy
,
S. K.
,
2012
, “
Separation of Two Phenotypically Similar Cell Types Via a Single Common Marker in Microfluidic Channels
,”
Lab Chip
,
12
(
18
), pp.
3399
3407
.
9.
Nagrath
,
S.
,
Sequist
,
L. V.
,
Maheswaran
,
S.
,
Bell
,
D. W.
,
Irimia
,
D.
,
Ulkus
,
L.
,
Smith
,
M. R.
,
Kwak
,
E. L.
,
Digumarthy
,
S.
,
Muzikansky
,
A.
,
Ryan
,
P.
,
Balis
,
U. J.
,
Tompkins
,
R. G.
,
Haber
,
D. A.
, and
Toner
,
M.
,
2007
, “
Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology
,”
Nature
,
450
(
7173
), pp.
1235
U1210
.
10.
Waldbaur
,
A.
,
Rapp
,
H.
,
Lange
,
K.
, and
Rapp
,
B. E.
,
2011
, “
Let There Be Chip-Towards Rapid Prototyping of Microfluidic Devices: One-Step Manufacturing Processes
,”
Anal. Methods
,
3
(
12
), pp.
2681
2716
.
11.
Gross
,
B. C.
,
Erkal
,
J. L.
,
Lockwood
,
S. Y.
,
Chen
,
C.
, and
Spence
,
D. M.
,
2014
, “
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
,”
Anal. Chem.
,
86
(
7
), pp.
3240
3253
.
12.
Lee
,
K. G.
,
Park
,
K. J.
,
Seok
,
S.
,
Shin
,
S.
,
Kim
,
D. H.
,
Park
,
J. Y.
,
Heo
,
Y. S.
,
Lee
,
S. J.
, and
Lee
,
T. J.
,
2014
, “
3D Printed Modules for Integrated Microfluidic Devices
,”
RSC Adv.
,
4
(
62
), pp.
32876
32880
.
13.
Bhargava
,
K. C.
,
Thompson
,
B.
, and
Malmstadt
,
N.
,
2014
, “
Discrete Elements for 3D Microfluidics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
42
), pp.
15013
15018
.
14.
Esch
,
M. B.
,
Prot
,
J. M.
,
Wang
,
Y. I.
,
Miller
,
P.
,
Llamas-Vidales
,
J. R.
,
Naughton
,
B. A.
,
Applegate
,
D. R.
, and
Shuler
,
M. L.
,
2015
, “
Multi-Cellular 3D Human Primary Liver Cell Culture Elevates Metabolic Activity Under Fluidic Flow
,”
Lab Chip
,
15
(
10
), pp.
2269
2277
.
15.
Tasoglu
,
S.
,
Gurkan
,
U. A.
,
Wang
,
S.
, and
Demirci
,
U.
,
2013
, “
Manipulating Biological Agents and Cells in Micro-Scale Volumes for Applications in Medicine
,”
Chem. Soc. Rev.
,
42
(
13
), pp.
5788
5808
.
16.
Dharmasiri
,
U.
,
Witek
,
M. A.
,
Adams
,
A. A.
, and
Soper
,
S. A.
,
2010
, “
Microsystems for the Capture of Low-Abundance Cells
,”
Annu. Rev. Anal. Chem. (Palo Alto Calif.)
,
3
, pp.
409
431
.
17.
Plouffe
,
B. D.
,
Kniazeva
,
T.
,
Mayer
,
J. E.
, Jr.
,
Murthy
,
S. K.
, and
Sales
,
V. L.
,
2009
, “
Development of Microfluidics as Endothelial Progenitor Cell Capture Technology for Cardiovascular Tissue Engineering and Diagnostic Medicine
,”
FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol.
,
23
(
10
), pp.
3309
3314
.
You do not currently have access to this content.